
Information and Software Technology 56 (2014) 1233–1252
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Knowledge transfer, translation and transformation in the work
of information technology architects
http://dx.doi.org/10.1016/j.infsof.2014.04.001
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Instituto Tecnológico Vale, Belém, Brazil. Tel.: +55 91
3213 5571; fax: +55 91 3213 5400.

E-mail addresses: mcfigueiredo@ufpa.br (M.C. Figueiredo), cleidson.
desouza@acm.org (C.R.B. de Souza), marcelo.zilio@acad.pucrs.br (M.Z. Pereira),
rafael.prikladnicki@pucrs.br (R. Prikladnicki), audy@pucrs.br (J.L.N. Audy).
Mayara Costa Figueiredo a, Cleidson R.B. de Souza a,b,⇑, Marcelo Zílio Pereira c, Rafael Prikladnicki c,
Jorge Luis Nicolas Audy c

a Universidade Federal do Pará, Belém, Brazil
b Instituto Tecnológico Vale, Belém, Brazil
c Pontifícia Universidade Católica do Rio Grande do SUL (PUCRS), Porto Alegre, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 December 2012
Received in revised form 28 March 2014
Accepted 1 April 2014
Available online 12 April 2014

Keywords:
IT architecture
Software architecture
Architect roles
Context: Information Technology (IT) architects are the professionals responsible for designing the infor-
mation systems for an organization. In order to do that, they take into account many aspects and stake-
holders, including customers, software developers, the organization’s business, and its current IT
infrastructure. Therefore, different aspects influence their work.
Objective: This paper presents results of research into how IT architects perform their work in practice
and how different aspects are taken into account when an information system is developed. An under-
standing of IT architects’ activities allows us to better support their work. This paper extends our own
previous work (Figueiredo et al., 2012) [30] by discussing aspects of knowledge management and tool
support.
Method: A qualitative study was conducted using semi-structured interviews for data collection and
grounded theory methods (Strauss and Corbin, 1998) [5] for data analysis. Twenty-seven interviews were
conducted with twenty-two interviewees from nine different companies through four cycles of data col-
lection and analysis.
Results: Companies divide IT architecture activities among different roles. Although these roles receive
different names in different organizations, all organizations follow a similar pattern based on 3 roles:
enterprise, solutions and software architects. These architects perform both the technical activities
related to the IT architecture and the social activities regarding the communication and coordination
with other stakeholders and among themselves. Furthermore, current tools used by IT architects lack
adequate support for all these aspects.
Conclusion: The activities of the different IT architects are highly interconnected and have a huge
influence in the way the requirements are handled in every phase of the development of an information
system. The activities of IT architects are also important for knowledge transfer, translation and transfor-
mation, since they receive from and spread information to different groups of stakeholders. We also
conclude that they lack appropriate tool support, especially regarding support for their collaborative
work.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The main goal of any information system is to attend to client
and user requirements. However, clients and users are not always
sure or do not even know what they want [27]. That is why
requirement analysts are essential to the development of an infor-
mation system. Nevertheless, there is still a considerable gap to be
covered between requirements and a working system. In other
words, during the construction of any information system, require-
ments need to evolve from client and user desires expressed in nat-
ural language into technical aspects and constraints developed by
developers. In this process, aspects such as current and potential
customers, organization’s business, existing IT infrastructure, and
others also influence the information system and need to be
reflected in the working system. In fact, in large-scale companies
software is seldom built from nothing; instead, it is embedded in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.001
mailto:mcfigueiredo@ufpa.br
mailto:cleidson.desouza@acm.org
mailto:cleidson.desouza@acm.org
mailto:marcelo.zilio@acad.pucrs.br
mailto:rafael.prikladnicki@pucrs.br
mailto:audy@pucrs.br
http://dx.doi.org/10.1016/j.infsof.2014.04.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1234 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
a large ecosystem that includes other information systems, organi-
zational patterns and standards to be followed, costs and busi-
nesses goals it needs to achieve, among other factors [28]. While
requirement analysts are responsible for understanding and elicit-
ing client and user desires and software developers are responsible
for the development of a particular software, information technology
(IT) architects are the professionals in between these two groups.
They take all the aforementioned aspects, and also the work of ana-
lysts and developers into account when designing an information
system: they define the components that make up the information
system of the entire organization instead of the components of a
single system, and establish how products acquired and already
developed systems are going to be integrated to compose the over-
all information system of the organization [7].

Given the importance of IT architects’ work some companies
and organizations have looked into ways to support it. For
instance, customized modeling languages have been proposed
[14]. There are also associations that seek to study and improve
the career of IT architects (e.g., IASA [1] and The Open Group
[2]). These associations created certifications trying to better regu-
late and create a common knowledge base to this career. According
to them, IT architects occupy a broader role, while enterprise archi-
tects, software architects and other roles involved with architec-
ture work are specializations of the first one. For this reason, we
adopt this nomenclature (IT architects), given that it encompasses
the other architecture-related roles.

Despite their importance, to the best of our knowledge, there are
no studies focusing on the work performed by IT architects. There-
fore, this paper goes a step beyond previous research by describing
a qualitative study conducted with IT architects. As is usual in qual-
itative studies, our research question is very broad: How do IT archi-
tects perform their activities in industry? In order to answer this
question we conducted 27 semi-structured interviews [24] with
22 different architects from 9 different system-developing compa-
nies. We used grounded theory methods [5] for data analysis. Con-
sistent with results from the literature, our results suggest that
there are 3 different types of IT architects who all perform similar
roles in the organizational ecosystem at different ‘‘points’’ in the
organizational hierarchy. More importantly, our results extend
the literature by suggesting that those architects work as ‘‘bridges’’
between the customers (and analysts) and the developers, trans-
forming [29] the business requirements and the organizational con-
straints into technical aspects that can ultimately be implemented
by software developers. To be more specific, each architect is a
‘‘bridge’’ between different set of actors in such a way that the activ-
ities of the different IT architects are highly interconnected. Based
on data from the interviews and an analysis of tools, frameworks,
and modeling languages suited for IT architects, we also suggest
that IT architects lack tool support, especially regarding collabora-
tive aspects that can help them better coordinate their work given
their interdependencies [27]. The work reported in this paper is an
extension of our earlier work described in [30].

The remainder of the paper is organized as follows. Section 2
presents background information about IT architecture and the dif-
ferent types of IT architects. Sections 3 and 4 describe the setting of
the study and the research methods used respectively. Section 5
presents the findings followed by their implications in Section 6,
while Section 7 discusses tool support for IT architects. Finally,
Section 8 presents our conclusions and suggestions for future work.

2. IT architecture

2.1. Architect roles

IT architecture is defined by IASA as ‘‘the art or science of
designing and delivering valuable technology strategies’’ [6]. This
definition emphasizes that IT architecture is not focused on deliv-
ering solutions or projects in a particular timeframe. Instead, it
focuses on delivering technology strategies, of which solutions
and projects are only a part. More specifically, IT architecture
defines the components that make up the overall information sys-
tem of an organization. It generates a plan that defines how
acquired products and developed systems will be integrated to
compose the overall information system strategy of the organiza-
tion. It also enables the management of IT investment in a way that
more clearly meets business needs [7].

The professional responsible for developing the IT architecture
is the IT architect, who defines strategies for solving customer busi-
ness problems or needs through the use of information technology.
Those strategies include systems, applications, processes, hard-
ware and software components, and the integration of many kinds
of products, technologies, and services [8].

Based on the aspects discussed above, it is no surprise to find
out that there are many different aspects that an IT architect needs
to be able to handle. In fact, some authors [9–11] argue that this
role is considered ‘‘ambiguous and murky’’ because it interacts
with many different types of stakeholders and each of them
expects the architect to work in a different way. According to these
authors, an IT architect needs to be, at the same time, (i) a gener-
alist, when she/he interacts with managers for example; and (ii)
a specialist, when she/he interacts with software developers or
other technical personnel. In order to reduce this ambiguity many
companies establish different types of architects, also called IT
architect roles [11]. However, these different roles are not stan-
dardized, i.e., each company establishes the roles it considers most
adequate.

In a first step towards standardization, IASA and The Open
Group discuss disciplines or specializations of the IT architect role
[6,8]. The idea is very simple: every IT architect should have the
same basic knowledge and then acquire a higher level of profi-
ciency in one IT architecture discipline or specialization. Examples
of disciplines include: software architecture, information architec-
ture, business architecture, technological infrastructure architec-
ture, network architecture, etc.

In this paper, we will use the definition presented by the IASA,
which suggests four different architect roles [9] (described below).
It is important to highlight that this definition was used to describe
our results, but did not guide our research as a preconceived theory
or view. This will be described in detail in Section 4.

� Enterprise architect: this architect works to support the organi-
zation’s business strategy with IT solutions and information.
He/she is responsible for the overall IT strategy and ensures that
the IT architecture is cost effective, i.e., that the IT investments
are aligned to the organization’s business strategies. He/she is
responsible for strategies at many different levels, such as glo-
bal standards and strategies related to security and overall
infrastructure. This requires a deep knowledge of business, IT,
enterprise architecture, business modeling, governance, project
management and economy experience; in addition to leader-
ship and negotiation skills. Akenine [9] argues that this role is
similar to a city planner who, using strategy, planning, and reg-
ulations, is responsible for different functions in a city that must
work together effectively.
� Business architect: this role also focuses on IT solutions for the

entire organization. The business architect focuses on the orga-
nizational business needs and understands in details how the
organization works. He/she is usually involved in business
related areas and also in process improvement efforts. This
architect suggests improvements in the organization IT depart-
ment together with enterprise architects, once they understand
how information systems support the organization’s business.

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1235
Business architects help in process modeling and support
solution architects with analysis and requirements of new or
existing solutions. They have a deep knowledge of the business,
process modeling and requirements analysis. Thus, although
they have an organizational focus, they are also active in
ongoing projects working to ensure that these projects deliver
benefits to the organization’s business [9].
� Solution architect: this architect focuses on the ongoing projects

and works in designing IT solutions based on requirements from
the organization business. He/she aligns new solutions with
architectural principles, considering standards, architectural
principles and integration within the organization, and taking
into account the reuse of existing organizational capabilities.
Solution architects are responsible for balancing functional
and non-functional requirements, defining priorities and
trade-offs. Their goal is the success of the current project. They
have broad and general technical knowledge, and competencies
in infrastructure, data models, service orientation, and enter-
prise architecture [9]; and
� Software architect: this role focuses on the ongoing project sim-

ilarly to solution architects. While solution architects have a
wider focus on policies, regulations, and reuse of existing assets,
software architects have a deeper knowledge in technology
(opposed to business). They work in designing and structuring
software systems, dealing with both functional requirements
and quality attributes, such as reusability and performance.
Some quality attributes are obviously shared with solution
architects. Software architects must have deep knowledge on
programming languages, frameworks, standards and technical
modeling [9].

It is possible to note that as the activities of an architect get clo-
ser to the definition of low level components and to technical
aspects (UML, programming languages, structuring classes, etc.),
they also get closer to what software engineering researchers
and practitioners usually calls software architecture. The work of
software architects has not been sufficiently explored in empirical
studies with the exception of the work described by Smolander
[3,33] and Grinter [4]. However, based on what has been presented
above, the activities of software architects comprise only one part
of the entire IT architecture process, i.e., a software architect is only
a particular type of IT architect. To the best of our knowledge, this
work is the first one to address the work of IT architects.
3. Settings

This paper describes a study that aims to understand how IT
architects perform their activities in industry. To do that, we con-
ducted research in system development organizations, focusing
on the roles that perform architectural activities and on their
Table 1
Companies summary.

Company Clients number Employees number DSD Projects per year

Company A Millions 170.000 Y Hundreds
Company B Millions 96.000 Y –
Company C 10 150–200 I 50
Company D 32 140 I 130
Company E Millions – Y –
Company F 1 500* N 1**

Company G 1 230 N 1**

Company H 200 1600 Y 40
Company I 15 – I –

* Company total employees number. We researched only one division.
** Company has only one project that is either not finished (Company G) or is an inside
relationships. Although we could identify a set of possible activi-
ties performed by IT architects based on a literature review, this
approach would be too limited because it would constrain our
data collection to aspects already reported in previous studies.
Since we wanted to understand how IT architecture is developed
in practice in a real organization, we adopted a qualitative
approach, given the exploratory nature of the study. Thus, we vis-
ited 9 different IT organizations where we conducted interviews
with professional architects and other related roles. The compa-
nies studied and reported on this paper are described below and
summarized in Table 1. Information in these descriptions and
table was collected from the companies’ websites and through a
small questionnaire sent to the interviewees. This questionnaire
had questions related to each column in Table 1, but not all inter-
viewees responded to the questionnaire and, among those who
responded, not all were aware of the requested information
(e.g., size of projects). We also tried to collect information in the
companies’ websites, but they also did not have all the necessary
information for filling the entire table. We decided to provide all
the information we had in order to characterize the companies
the best we could, although this information does not provide a
direct comparison. The description of each company is thus not
standardized and there is some missing information in Table 1.
Company names have been anonymized due to confidentiality
issues.

Company A – This is a multinational company headquartered in
the United States with many branches around the world, working
with distributed software development. It is an IT company that
has a broad portfolio of products, from personal customers to large
companies, offering complete solutions: services, hardware and
software. It has millions of customers in the world and 170,000
employees.

We conducted our research in the Brazilian branch located in
the city of Porto Alegre. The division where we collected data has
a SW-CMM level 2 certification and, according to our informants,
its processes are CMMi level 3, although they have not yet paid
for the evaluation. The company develops hundreds of projects
per year and its projects usually last from 6 to 12 months. This
company is generally involved with large projects: for instance,
one of our informants said that he is currently working on a project
with around one million lines of code.

Company B – This is a multinational IT company headquartered
in the United States. It develops, sells and supports computers and
related products and services. Among these products are personal
computers, servers, data storage devices, network switches, soft-
ware, and computer peripherals. Company B has many branches
around the world and employs more than 96,000 people world-
wide. We started to research (in the first iteration of the study)
in a Brazilian branch located in Porto Alegre, but we were not able
to return due to commitments of our interviewees, so we could not
get as much information as we would like to in our research.
Projects size Employees per project Projects duration Maturity Model

1 Million loc 70 6–12 Months CMMi 2
– – – –
100 Use cases 5–15 1000–2000 h CMMi 3
– 5–15 3–4 Months CMMi 2
– – – N
– – 5 Years** N
17,000 Classes 230 5 Years** N
– 20 4 Months N
– – – CMMi 2

project (Company F).

1236 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
Company C – This is a Brazilian software development com-
pany, specialized in e-commerce for the retail industry. Its head-
quarters are located on a Technology University Campus, in Porto
Alegre, Brazil, and it also has offices in Portugal. This company pro-
vides IT services of different areas of expertise to medium and large
organizations. Currently, according to our interviewees, the com-
pany has from 150 to 200 employees, 10 customers (half in Brazil
and half in Portugal), and usually develops around 50 projects per
year, each, depending on the project type, having on average 100
use cases and between 1000 and 2000 h. Depending on project
size, it usually has between 5 and 15 employees working on each
project. It was evaluated at CMMi level 3.

Company D – Company D is a Brazilian IT consulting and sys-
tems development company headquartered in Porto Alegre, Brazil,
with another office in São Paulo, Brazil. It has existed since 2002
and provides services in software development and infrastructure
through consulting, project factory, outsourcing and offshoring.
Company D has operations in Brazil and overseas assignments,
including customers in segments of energy, agribusiness, informa-
tion technology, transportation, logistics, petrochemicals and
retail. According to our interviewee, this company develops around
130 projects per year and has 32 customers; 30 in Brazil and 2
abroad. It has CMMi level 2 evaluation.

Company E – Company E is a multinational Internet company
with headquarters in Spain and operates as a web portal and/or
an Internet access provider in the United States, Spain, and many
Latin American countries. We did research at one of the Brazilian
affiliates, which is the head office of Latin America.

Company F – This company develops corporate solutions for
credit cards, with products for HR and fleet management (supply
and maintenance). It works especially using the Internet as a tool
for self-management, enabling its customers to control limits,
request and cancel cards over the web, etc. The company has
around 630 employees in 9 different states in Brazil. This company
has its own IT department and we interviewed 2 architects from
this area. This area is a software factory that provides services to
the company. The IT area thus has only one customer, the company
itself.

Company G – This Company is a Brazilian state-run provider of
IT solutions focused on the banking sector. It is headquartered in
Rio de Janeiro, Brazil, and is controlled by a Brazilian state bank.
Products and services include integrated software solutions and
outsourcing, network management and technical support. Com-
pany G has many affiliates in Brazil; we did research at the affiliate
located in Belém.

Company H – This company is a global IT consultancy head-
quartered in the United States. It delivers custom application and
provides consulting. It also has many affiliates around the world.
We did research at a Brazilian affiliate, located in Porto Alegre. This
affiliate has only been open for 11 months and we were not able to
get as much information as we would have wanted for our
research.

Company I – This is a Brazilian Company headquartered in Porto
Alegre, Brazil. It is focused on database and web software technol-
ogies, development and implementation of corporate and critical-
mission applications. It has development in Brazil and also in the
United States and Portugal through partnerships with other com-
panies. Company I has CMMi level 2 evaluation.

Table 1 summarizes the companies studied. As previously
explained, there is some missing information because not all inter-
viewees responded (or knew all the answers) to every question.
Column DSD indicates if the company works with distributed soft-
ware development: ‘‘Y’’ is for yes, ‘‘N’’ is for no, and ‘‘I’’ is for initial,
which means that the company has already worked with DSD but
it was either a pilot project (Company C) or it is not usual for the
company (Companies D and I).
4. Research methods

4.1. Qualitative research

Our goal in this research was to understand how IT architects
perform their activities in industry. Considering the characteristics
of this goal, our research was conducted as a qualitative study.
Qualitative research tries to understand the experience of a
determined group of people. It is research that produces results
that cannot be achieved through statistical procedures or similar
methods [5]. The main benefit of this type of research lies in the
fact that qualitative methods compel the researcher to delve dee-
per into the complexity of the problem instead of abstracting it.
Therefore, the results are richer and more informative, helping to
answer questions involving variables that are difficult to quantify,
such as human characteristics like motivation, perception and
experience [31].
4.2. Data collection and analysis

As for data collection methods, we used semi-structured
interviews [24]. Semi structured interviews have an intermediate
control level, and are composed by a mix of closed and open
questions, making it possible to collect the kind of information
the researcher is seeking and also the unpredicted kinds. [31].
The interview presents a conversation flow and new questions
can be developed in real time, as the researcher learns new
information [31].

The data analysis method used was Grounded Theory (GT) [5].
We chose GT because we wanted to understand architectural
activities as they are really performed, instead of descriptions from
books or scientific papers. In order to do that, it is important to
obtain the information from people who actually perform the
activities, in our case using interviews, and to systematically ana-
lyze it. GT allows the creation of a theory derived from the data,
systematically collected and analyzed by a research process, so
GT is useful and appropriate to achieve our goal.

In addition, as in other qualitative studies, in GT there is no a
priori theory; the researcher starts with a broad research question
that can be refined during the study. Our research question fits this
characteristic (How do IT architects perform their activities in
industry?) and we decided to explore architect activities without
any preconceived theory, addressing many different aspects of
architecture and software development, along with broad ques-
tions that aimed to instigate the interviewees to freely speak about
their work. As our work progressed, we focused on additional
aspects including the different types of IT architects, their interac-
tions among themselves and with other stakeholders, and finally,
the extent to which their current tools supported their work.

GT also strongly recommends that data collection and analysis
iterations be intertwined. The analysis starts as soon as one has a
significant amount of collected data and this analysis will direct
the next data collection [5]. Furthermore, the next data collection
is based on the concept of theoretical sampling: it consists of
choosing the points of the next data collection to expand, comple-
ment or deny the theory that is being constructed. It is done to
explore the different conditions in which the concepts vary [5].

GT is based on codifications (open, axial and selective codifica-
tions [5]), which consist of assigning a category or a concept to a
piece of data. Therefore, a theory is a set of categories well devel-
oped and systematically related among each other in order to form
a theoretical framework that explains the phenomenon studied [5].

Considering these aspects, our initial research question was
very broad, and focused on understanding how IT architects
perform their activities in industry, in real organizations. To try

Table 2
Data collections summary.

Company Interviewees and roles Data
collection

A Interviewee 1: Technical architect 1, 2 and 4
Interviewee 14: Technical architect 4
Interviewee 15: Architect 4

B Interviewee 2: Technical leader 1
Interviewee 3: Developer 1

C Interviewee 4: Architect 1, 2 and 4
Interviewee 5: Architect 1, 2 and 4
Interviewee 16: Architect 4

D Interviewee 6: Distributed projects manager 1
Interviewee 17: Architect 4

E Interviewee 7: Technology coordinator/
architect

1 and 4

Interviewee 8: Technology manager 1 and 4
Interviewee 18: Architect 4

F Interviewee 9: Architect 2 and 4
Interviewee 10: Architect 2

G Interviewee 11: Architect 3
Interviewee 12: Architect 3
Interviewee 13: Architect 3

H Interviewee 19 and 20: Systems consultants 4

I Interviewee 21: Architect 4

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1237
to answer this question we interviewed employees who worked on
IT architecture activities. Our focus was on architects, but we also
interviewed other roles in order to acquire a broader knowledge of
subject (the interviewees’ roles are listed in Table 2). This also
allowed us to gather information about architectural activities that
were performed by roles not directly labeled as architect. This will
be discussed later in the paper.

Overall, we conducted 4 iterations of data collection, which
were always intertwined with data analysis. In total, we conducted
27 interviews with 22 different informants. Interviews were
recorded and lasted from 23 min to 1 h and 27 min. Overall, we
have 19 h of interviews that consist of more than 295 pages of
transcribed data. Table 2 summarizes the companies and intervie-
wees from each data collection. Relevant quotes are presented in
the results and were freely translated into English by the authors.

4.3. The process of analysis

The study started from ‘‘scratch,’’ without any theoretical model
guiding data collection and analysis. However, it integrated exist-
ing research results in the last two phases of data analysis, as
described below. In addition, in the first cycle of the study we
looked for companies having distributed software projects because
this kind of development accentuates the difficulties of software
development [32]. However, as we conducted the interviews and
analyzed the data we realized that aspects of our results were
not exclusive to distributed software development,1 so we decided
not to limit the company sample in the following cycles.

4.3.1. The first cycle
In the first data collection we conducted 8 interviews in 5 dif-

ferent organizations (Companies A to E) located in Porto Alegre,
Brazil. The companies (in this and in all iterations) were contacted
through convenient sampling, given that one of the authors has
contacts in the Technology Park of his University where several
software companies are located.
1 We argue that our results concern distributed and collocated software
development.
The author who had access to the companies made the first con-
tact asking for employees who worked with software architecture
and could help in the research. We next contacted these employees
and scheduled the interviews. The interviews were conducted in a
meeting room and we asked to record them, to which all intervie-
wees agreed. We also provided a confidentiality agreement in
which we assured we would not disclose confidential information
or names to anybody but the researchers. During the interviews,
we took notes of any interesting aspect that was mentioned.

The interviews of this iteration focused on the different aspects
that influence software architecture development, emphasizing
the importance of architects’ work especially in the context of
distributed software development. In order to conduct these inter-
views we developed an interview guide2 that was divided into the
following sections:

(a) general questions (i.e. name, years in the company, role);
(b) questions about distributed software development;
(c) questions about the daily work of the interviewee, asking

them to use a current project as example whenever possible;
(d) questions about the software architecture; and
(e) questions about the interaction among the different teams

involved in the construction of the information system.

The questions were created by the authors based on the research
question. In addition, during the interviews, we were free to explore
aspects unanticipated by the guide as the informant mentioned
something interesting to be discussed.

The interviews were transcribed and analyzed using the Max-
QDA tool [19]. We analyzed the data line by line to identify units
of meaning and coded them into categories and subcategories
using the open coding technique [5]. MaxQDA allows the linking
of an amount of text into a category and it also has means to easily
report and return every quote linked to each category of all docu-
ments used in the research. The category names were based on the
terminology used by the informants and on the terms contributed
by the researchers. Examples of categories are: architecture activ-
ities (which has ‘‘technical’’ and ‘‘non-technical’’ as subcategories)
and task division. After the open coding, we started the axial cod-
ing to understand the relationships in our data.

During analysis of this first iteration we learned about the dif-
ferent architect types through our interviews. As mentioned
before, our interview guide had questions about the interaction
among teams and roles and, we also always encouraged the inter-
viewees to explain how interaction happened and which were the
roles they interacted the most with. While answering this ques-
tion, one interviewee directly mentioned that her/his company
had three different types of architect called enterprise, solution
and technical architect. Thus, during the open coding a category
(named ‘‘Architect Types’’) was created to represent this informa-
tion. This interviewee described the activities each type of archi-
tect performed in his(her) company. During the axial coding, we
compared this information with that grouped in the ‘‘architecture
activities’’ and ‘‘task division’’ categories and realized that there
seemed to be a pattern: every company seemed to have a division
of tasks related to architecture.

The constant comparison method was employed with the data
and categories and relationships identified among the concepts.
This process was applied cyclically in order to help us proceed to
the next iteration more focused and therefore able to ask addi-
tional questions (e.g., about the different architect types), listen
and observe in more sensitive ways. Thus, based on the analysis
of the first iteration, we planned the next data collection cycle.
2 The interview guides are presented at Appendix A.

1238 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
4.3.2. The second cycle
From the results of the first analysis we elected some aspects to

be refined in the next iteration of data collection and prepared the
second collection accordingly, i.e., we performed theoretical sam-
pling (see Section 4.2). The main aspect we decided to refine was
the division of architecture related tasks. We conducted interviews
with new interviewees and follow-up interviews with intervie-
wees from the first iteration. More specifically, we conducted 5
interviews in 3 companies (follow-up in Companies A and C, and
two new interviews in Company F). Data from those interviews
were integrated to the same categories of the first set and analyzed
together. We performed open and axial coding again (also cycli-
cally performed) with the data from this iteration.

At this point, we had around 30 categories encompassing many
different aspects, such as division of labor, architect’s activities,
collaboration, DSD difficulties, and awareness. Another example
is the category named ‘‘Architecture’’, which had 12 sub-categories
(Who, When, How, Description, Distribution, Modules Interaction,
Boundary Objects, Difficulties, Different Visions, Technology,
Importance, and Liaisons). This category aimed to gather as much
information as possible about software architecture. Other cate-
gory names were: ‘‘Division of Labor’’ (sub-categories ‘‘Model’’,
‘‘Locations’’, ‘‘Distribution’’), ‘‘Architect Activities’’ (sub-categories
‘‘Technical’’ and ‘‘Non-Technical’’), ‘‘Architect Types’’, and ‘‘Interac-
tion among teams’’. We first categorized all interviews according to
these categories, and then we analyzed all the data. During this
second data analysis, we noticed one recurrent aspect: the pres-
ence of different roles participating in the architecture activities
and the interaction among them. We also observed the relation-
ship of these architectural roles with aspects of information diffu-
sion, communication, and coordination during the development
process of information systems. We thus again refined the focus
of our research based on our data, as suggested by grounded theory
[5]. We noticed that companies not only have different architec-
ture roles, but these roles are organized in such a way that the
development of the information systems these companies create
is facilitated. We categorized these roles based on the activities
they perform and on their interactions with other roles. Consider-
ing this, we identified three main roles, and provisionally used the
names Company A gave to their roles, since all of the other roles
seemed to fit into them. These architecture roles play an important
function by transforming [29] knowledge about customers and
organizational requirements into aspects that can be implemented
by software developers.

At this point we discovered the IASA study describing the differ-
ent architect types. We also conducted a literature review of this
aspect to understand what was known about it. We found that
there were only a few studies about this, and they were mainly
performed by organizations such as IASA and The Open Group.
We decided to adopt the nomenclature suggested by IASA, because
it was based on a research with many other industries. We then
elected this aspect, and all the information and knowledge flow
related to it as the leading aspect of our research. We should
emphasize that, to the best of our knowledge, this information flow
is not covered by studies from IASA or any other author.

Based on the data from these two initial data collections, we
started the process of selective coding. This is done through the
selection of a core category and the integration and refinement
of the other categories [5]. In our case, we created a new category
called ‘‘Transformation’’,3 since we observed that as the software
system is developed, information is transformed from customer
3 In our original analysis, the name of this category was Translation. Later on, we
identified the work of Carlile [29] in transferring, translating and transforming
knowledge and we then decided to use the term transformation which is more
adequate for what we are describing in this paper.
and organizational requirements into technical aspects. We also
reorganized our categories to integrate and refine them considering
the new main category and, consequently, we revisited our inter-
views and previous codes. For example, the prior category called
‘‘Architect Types’’ was transformed into a broader category called
‘‘Architect’’ with many sub-categories. One of them was named
‘‘Roles’’ and divided into three sub-categories, one for each architect
role we identified. All the categories were reorganized in order to
better describe this transformation process, which is performed by
the different IT architects. This process is explained in more details
in Section 5.

4.3.3. The third cycle
In the following data collection, we conducted 3 interviews in a

new organization located in Belém, Brazil, again using theoretical
sampling, i.e., choosing data collection points to expand and/or test
the theory under development [5]. We also added more questions
about the interdependencies among the IT architects as well as
their interactions. Our goal was to continue the process of selective
coding, i.e., the refinement of our theory.

Once again the interviews were transcribed and coded and the
data from this iteration was integrated into our previous datasets.
We again conducted a literature review regarding IT architecture
and architects. The analysis from our datasets and the results from
our literature review guided our next data collection. After doing
this, our theory was better defined, and we thus planned the next
data collection focusing on theory validation.

4.3.4. The final cycle
Another aspect of selective coding is validation of the theory [5,

pg. 159]. According to Strauss and Corbin [5], one way to validate
the theory is telling it to the interviewees and asking them how the
theory ‘‘fits’’ their particular cases. So, in the fourth data collection
iteration we tried to interview all previous interviewees to validate
our results. This is also known as member checking [36]. In order to
keep our data from being restricted to a single’s person point of
view, i.e., not being representative of the entire organization, we
contacted at least one new interviewee from every organization
in this fourth iteration as another form of validation. We also con-
ducted interviews in new organizations to verify if our theory
would apply to them. Overall, we conducted 11 interviews with
5 old interviewees (Companies A, C and E) and 9 new ones (Com-
panies A, C, D, E, F, H and I). On some occasions, we had more than
one informant per interview. As in the previous iterations, these
interviews were transcribed, analyzed and integrated into our pre-
vious datasets, contributing to the creation of an audit trail that
explains our analysis [36]. The following section presents our
results of this entire process of data collection and analysis.
5. IT architecture in practice

The main goal of any information system is to attend to client
and user requirements. However, clients and users are not always
sure or do not even know what they want [27]. That is why require-
ment analysts are essential to the development of an information
system. Furthermore, a large information system is seldom iso-
lated; often, it needs to be integrated into a set of other information
systems from the organizations, and must adhere to its standards,
protocols and constraints. In other words, the set of client and user
needs and/or desires needs to be ‘‘transformed’’ into a (formal or
informal) specification that can be implemented by software engi-
neers. The professionals who work in this transformation process
are the IT architects. Furthermore, these IT architects can be classi-
fied into 3 different types according to their ‘‘location’’ in the orga-
nizational hierarchy. To be more specific, each type of architect is a

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1239
‘‘bridge’’ between different sets of actors in such a way that the
activities of the different IT architects result in the specification to
be implemented. In addition, IT architects also need to interact with
one another passing along information relevant for them. In other
words, their work is highly interconnected.

Fig. 1 is a representation of this transformation process, in
which each architect mainly interacts with a set of stakeholders
in addition to grouping and bridging their information (already
grouped and transformed by him/her) to the next architect, who
does the same thing with another set of stakeholders, until the
information arrives at the software developers at the abstraction
level they can interpret and work on. It is through this flow that
the information system is developed.

In the following sections we describe each one of these aspects
of the transformation work of IT architects. First, we present the
different types of IT architects we identified. Next, we illustrate
how each type of architect interacts with a very specific set of
actors. After that, we discuss the interdependencies among the dif-
ferent architects. We conclude this section discussing how current
IT architects’ tools provide limited support for their transformation
and collaborative work.

5.1. The architecture roles in practice

In the nine companies studied, we identified that the division in
roles can be represented in the structure presented in Fig. 1. This
result was based on all the information linked to our categories.
One of them was called ‘‘Architects’’ and was detailed in many
sub-categories during open codification. Among its sub-categories
were: ‘‘Roles’’ (also expanded into in ‘‘Enterprise’’, ‘‘Solution’’, and
‘‘Software’’), ‘‘Interaction among architects’’, ‘‘Interaction with
other stakeholders’’, and Collaboration. During axial coding,
excerpts from the interviews contained in these sub-categories
were linked, together with other excerpts from other categories
(for example, the category ‘‘Good Practices’’). Then, after the selec-
tive coding, we created Fig. 1, which summarizes the transforma-
tion process. This figure illustrates how each architect role
receives information from different groups of stakeholders, per-
forms his/her own work using this and other information and then
passes a different type of information along to the next architect.
As discussed before, previous work [8,9,11] suggests a division of
the IT architecture activities in different architecture roles. Our
results are thus aligned with previous research, but go further by
analyzing the interactions and information flow among these
architect roles.

We related the companies’ architect roles with the ones
described in Fig. 1 based on the activities each role performs. In
the first analysis we identified the activities the architects per-
formed, and separated them among technical and non-technical
(category ‘‘Architect activities’’ and its sub-categories ‘‘Technical’’
Fig. 1. Architect roles and the generic s
and ‘‘Non-technical’’). We detailed this analysis according to the
activities performed by enterprise, solution and software architects.
During this analysis, because we noticed the pattern of activities
associated with each architect role, we associated information from
other categories with them, especially the ones related to collabora-
tion, interaction, and information diffusion (we had sub-categories
named ‘‘Collaboration’’, ‘‘Interaction among architects’’, ‘‘Interaction
with other stakeholders’’, and ‘‘Information diffusion’’). Fig. 1 was
developed based on this analysis.

It is important to emphasize that some of the organizations
observed have the architect roles described in Fig. 1 formally
defined and institutionalized, while in others these roles are infor-
mal. In some organizations these roles are not called architects,
despite performing architecture-related activities. In addition, our
analysis did not identify the IASA role of the business architect in
any of the studied organizations. What we observed was that when
there is an enterprise architect, this role encompasses business
architect activities. When the company does not have an enterprise
architect, the solutions architect is the person responsible for per-
forming the activities of the business architect, in addition to his/
her own activities.

Fig. 1 represents the generic structure that we identified. For
instance, we noticed a common aspect with all companies: there
are always actors that perform activities from the solutions and
software architect roles. However, the enterprise architect might
or might not exist. More interestingly, each organization ‘‘adapts’’
this generic model according to its own interests. Despite the adap-
tation, we observed that the way companies organize the roles can
be classified into 3 different groups according to definition of roles,
namely: ‘‘defined roles’’, ‘‘partially defined roles’’, and ‘‘non-defined
roles’’. Each one of these groups is summarized in Table 3 and
described in details below, i.e., this table presents how each com-
pany maps these three groups of IT architects into its own roles.
Column 1, named ‘‘Group’’ presents the names of the three groups
of companies we identified according to how they define their
roles. Column 2, named ‘‘Company’’ presents company aliases. Col-
umn 3, ‘‘Role Name’’, presents the roles identified in each company,
while column 4, named ‘‘IASA Role’’, maps the roles in Column 3
with the ones suggested by IASA. For example, the first item in col-
umn one is the group called ‘‘Defined Roles’’. In this group we clas-
sified two companies, A and E (as identified in column 2), which
means that these two companies have well-defined roles, namely
enterprise, solution and technical architect (column 3). Column 4
indicates how these roles in company A are mapped into IASA
roles: Enterprise Architect and Solution Architect are called the
same, but Technical Architect in Company A is equivalent with
what IASA calls a Software Architect.

In the ‘‘Defined roles’’ group there are well-defined roles for the
enterprise, solution and software architects. They receive different
names, but we identified that they perform activities that are
tructure of their main interactions.

Table 3
Architect roles mapping.

Group Company Role name IASA role

Defined roles A Enterprise Architect Enterprise
Architect

Solution Architect Solution Architect
Technical Architect Software Architect

E Functional Responsible Enterprise
Architect

Technician Responsible Solution Architect
Team or Technical
Leader

Software Architect

Partially defined
roles

C – Enterprise
Architect

Software Architect Solution Architect
Designer Software Architect

D – Enterprise
Architect

Software Architect Solution Architect
Senior Developer Software Architect

I – Enterprise
Architect

Software Architect Solution Architect
Technical Leader Software Architect

Non-defined
roles

F – Enterprise
Architect

Software Architect Solution Architect
Software Architect Software Architect

G – Enterprise
Architect

Software Architect Solution Architect
Software Architect Software Architect

1240 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
similar to these three IASA architect roles (based on the ‘‘enterprise
architect’’ category). Moreover, it is also possible to identify some
typical activities of an IASA business architect among the activities
that the enterprise architect performs. The two companies
researched in this group are multinational organizations that also
work with distributed development.

In the second group (‘‘Partially defined roles’’), the role of solu-
tion architect is defined by the organization, but not necessarily
with this title: this role receives different names in different orga-
nizations but they have the same activities, especially those related
to the definition of the overall solution architecture. In this group it
is also possible to identify some activities performed by what IASA
calls an enterprise architect, but with no role dedicated to it: the
actor playing the role of solution architect is the same actor who
performs the enterprise architecture activities in addition to the
activities of a Solution Architect. The quotes related to these actors’
activities were related to ‘‘Enterprise Architect’’ and ‘‘Solution
Architect’’ categories at the same time. Because it was the same
actor who performed all of them, we could identify that this person
performed activities of both roles, but solution architect activities
prevailed. Companies C, D and I are in this group. All have more
than 100 employees and develop more than 50 projects per year.
Some of these projects involve distributed customers and/or teams,
but there are few such projects, or they are simply pilot projects or
experiments; i.e., distributed development is not consolidated in
these companies.

Finally, the last group (‘‘Non-defined roles’’) comprises Compa-
nies G and F. In this group we were unable to identify organiza-
tional architecture activities clearly differentiated among the
different architect roles (there was no interview excerpt assigned
to the ‘‘Enterprise architect’’ category for these companies). On
the other hand, solutions and software architects activities are well
identified, but these activities are interchangeable among the
architects (they usually do not have different roles’ names; all
are called ‘‘architects’’). In other words, they are not performed
by a defined role in every project and not even the person who per-
forms the role is previously assigned. The person (or sometimes
more than one) in the architecture team who identifies him/herself
with the project solution architect activities assumes this job. The
others automatically perform Software Architect activities.
Another characteristic of this group is that the architects (both
solution and software) have little contact with customers. Instead,
the so-called analysts are responsible for this activity. The archi-
tects thus handle the requirements and if they need to discuss
something about the requirements they have to talk to the
analysts.

Note that Companies F and G have some similarities between
them. They both call themselves software factories and have only
one customer apiece: Company F is the IT division of a credit card
solutions organization, while Company G is a regional branch of a
state-run organization created to support a very large local
customer. Both of them usually work in one project at a time. Their
architecture team is composed of four architects who are simply
called software architects. In each project there is therefore one
architect who works and creates the overall architectural solu-
tion, working as a solution architect while the other architects
assume typical IASA software architects activities, working closer
with developers and developing critical components. According
to our informants, this arrangement emerged during their daily
activities.

5.2. The interdependencies between architect roles and other
stakeholders

In this section, we describe how the division of labor according
to architecture roles serves two different purposes. First, it is a way
to organize the architects’ work regarding their IT architecture
activities. And second, it is at the same time a way to structure
IT architects communication activities.

The first purpose, to organize the IT architects’ work, is based on
a better definition of the attributions of each role. For example, in
the following quote, Interviewee 8 describes when and how the
role similar to the enterprise architect in Company E works. Inter-
viewee 8 works in a department where this role equivalent is
called systems architect (unlike other departments where it is
called ‘‘Technician Responsible’’, as defined in Table 3). During
the coding activities, we assigned this quote to the ‘‘Enterprise
architect’’ category, because it presents aspects that are part of
the IASA enterprise architect activities. In the end, given that the
quotes about this system architect role were assigned to this
category, we concluded it was equivalent to the IASA enterprise
architect. The same happened to the role called ‘‘Technician
Responsible’’ at the same company. According to Interviewee 8,
the systems architect does not effectively participate in the whole
project, being more involved in the beginning of it. He has already
held this role and defines it as follows:

‘‘He has more time to study new technologies; he has more time
to get to know Company E’s structure, to know other products
(. . .) and he talks much more about making proposals, perform-
ing analysis (. . .). He/she is not there to define the interaction
with external products from the company, he is there to thor-
oughly detail what needs to be done in the project: ‘we are
going to use this component’, ‘there is already a free software
product that makes this feature, we just need to adapt or extend
it’, etc.’’ – Interviewee 8, Company E.

Consequently, since the enterprise architects (and similar roles)
work focuses on organizational view, their activities are more
focused on the beginning of the projects, in order to outline how this
project will fit into the organization IT architecture. Considering
this, the quote above also illustrates how this ‘‘context’’ in which

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1241
the new products are being built influences the work of the archi-
tects: in this case, it means that some software components might
be used or adapted in this project.

This observation is also true about a different company; C. Com-
pany C does not have a specific role responsible for performing
enterprise architect activities. However, we identified that the role
equivalent to the solution architect also performs enterprise archi-
tect activities, along with his/her own activities (quotes related to
this role were initially assigned to both enterprise and solution
architect categories, although in later analysis we concluded that
this quote was a better fit to the solution architect category).
Despite the fact that this role mainly performs solution architec-
ture activities, it is called ‘‘software architect’’ in Company C (as
described in Table 3). In the following quote, Interviewee 4
describes this role. It is possible to identify the influence of the
‘‘context’’ described before, which is stronger in enterprise archi-
tect roles, when Interviewee 4 mentions investment and commer-
cial relationships, information this role receives at the beginning of
the project, when the company closes the deal.

‘‘The [solution] architect has a more separated function from all
that: he gets the overall project idea, what the project is going
to be. He defines that he understands which level of investment
is going to be made in the project, and it does not depend on the
analyst, it depends on the commercial relation. We receive
some information at the time the contract is made: this cus-
tomer is adopting Microsoft as a platform, and they are already
buying this and that, and they are already setting up an envi-
ronment... Meaning that we already know some information
and the analyst has not started working yet, but we already
know. So it is more with that information that we work. So, this
person designs, based on all these ideas, how the system con-
cept is going to be and plans what I said: a concept view, then
a logical view and so on. He does not hold himself in develop-
ment. He defines how the pieces of the puzzles are going to
be connected, which is the most suitable product for each situ-
ation. And he still can review it later.’’ – Interviewee 4, Company
C.

This same quote also illustrates the organization of the other IT
architect roles. The role described in it is equivalent to IASA solu-
tion architect and aims to propose the overall IT solution to be
developed, but there is no need to worry about the specifications
or diagrams. This is the responsibility of the technical leader in
Company E and designer in Company C, both similar to the IASA
software architect. This technical leader or designer is the actor
who works closely to developers and focuses on more low-level
aspects of the architecture. This information, assigned to the sub-
category ‘‘Interaction among architects’’, illustrates the informa-
tion used to develop the interconnections among architects in
Fig. 1.

Thereby the division of labor organizes the IT architecture activ-
ities among the different roles: each role has its responsibilities
better defined (even when it accumulates some of them) and
works with a reduced amount of information. This information is
provided both by the other architect roles and also by other stake-
holder groups. This information flow is the other aspect benefited
by the division of labor. It also serves to structure communication
activities (as described in Fig. 1): each architect interacts mainly
with a specific group of stakeholders. For instance, a solution archi-
tect needs to take into account the work products of the enterprise
architect and also receives information from stakeholders such as
directors and customer architects. On the other hand, software
architects receive the work product of solution architects and
interact mainly with developers. Interviewee 1 from Company A
summarizes this communication aspect in the following quote
(This quote is also assigned to the ‘‘interaction among architects’’
category):

‘‘What changes is the stakeholders’ ‘level’ with whom each [IT
architect] interacts. The enterprise architect talks more with
CIOs and CEOs. The solution architect will talk with an architect
from the other side [company] or with directors from the other
side. And the technical architect interacts more with [software]
developers. (. . .) And they communicate among each other’’. –
Interviewee 1, Company A.

Examples of the interactions of different architect roles and
other stakeholders were assigned to a different category, called
‘‘Interaction with other roles’’, in order to better understand all
the interactions involved in the architects’ activities. These interac-
tions are illustrated in the following quotes. The first one describes
the interaction between the marketing area and the technical
architect (similar to a software architect), while the second quote
involves the solution architect, stakeholders of the company ser-
vice delivery area, and the development team, that in this case
includes the software architect.

‘‘The marketing area brings its requirements. It is an entity in
itself and has a list of requirements that it wants to meet,
because the person from marketing [who interacts with the soft-
ware architect] is attentive to what is happening on the market,
especially what is happening in the other companies, so he can
point out and say ‘I am not managing to sell this product
because the competitor has this functionality and he nullifies
me with that, so I need something to end up with this advan-
tage over him’. So that is what the marketing bring to us [soft-
ware architects]’’. – Interviewee 1, Company A.
‘‘We have these three roles – service delivery, development
team [including the technical leader, equivalent to the software
architect] and the [solution] architect – to get the requirements,
put them on a board and start to draw little boxes, how it works,
how to solve it; I [as a solution architect] identify which compo-
nents are going to be reused, which are going to be developed
and among these ones we detail inside [the boxes] how they
are going to work. (. . .) When there is a list of requirements,
the [solution] architect is a piece of the puzzle, as well as the ser-
vice delivery and the development team [including the technical
leader, equivalent to the software architect]. He/she is not above
or between them, but together with them. They are comple-
mentary roles. I defend this idea of complementary [tasks]
instead of serialization [of tasks]’’. – Interviewee 7, Company E.

It is important to emphasize that the communication among IT
architects and the different stakeholders is not always straightfor-
ward. There are communication problems related to the domain
knowledge, and, IT architects devise strategies to handle these
problems and get their work done. In the quote below, we describe
a simple strategy based on a category called ‘‘Good Practices’’, and
related to the interaction categories: a meeting held specifically
to make sure people involved understand and use the same
terminology:

‘‘A common language among the project participants is neces-
sary. . . . I mean: it is not the developer talking some technical
language, it is not the requirement analyst who only speaks
the business language and then the architect between then. It
is necessary to have a specific project phase where common
terms are defined (. . .) So, meetings for term alignment are
needed’’ – Informant 16, Company C.

In addition to communication, architects also need to be able to
negotiate with the different groups involved. If this negotiation
does not happen, it can lead to problems in the project. These kind

1242 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
of problems were identified during the analysis based on the rela-
tions among the categories ‘‘Interactions among architects’’, ‘‘Inter-
actions with other stakeholders’’, ‘‘Problems and difficulties’’,
‘‘Good Practices’’, and ‘‘Bad practices’’. The following quote illus-
trates an example of this, where Interviewee 2, from Company B,
describes a project, where she/he worked:

There was a project that I worked in which I joined after the def-
inition of the architecture, I ‘tuned in’ the architecture, and
there was this distributed . . . development team. They didn’t
like the architecture (. . .). It was really conceptual; it was not
based on frameworks used in the market (. . .). It was pure archi-
tectural concepts applied, and it was good. I don’t know if the
other team had this visibility, but I went there and they said
to me: ‘do you know the system [X]? We are thinking of chang-
ing it to use Spring, what do you think? We would have to com-
pletely abandon the other architecture and adopt dependency
injection’. Then I asked: ‘But why do you want that?’, ‘We want
it in order to better maintain the code. We would like to better
maintain the code and to write less infrastructure code’.
Because the prior architecture had more code to maintain, but
since it was done and was stable I just needed to insert the busi-
ness rules, but I might eventually need to maintain the architec-
ture core. On the other hand, the team’s decision to adopt a
consolidated framework was to avoid this kind of problem, to
use something that is already approved by the market as some-
thing stable, scalable etc., to make coding easier. So, you see:
there were two teams in different locations that had different
visions. One team wanted to create its own market independent
architecture, while the other wanted to use a framework from
the market which was already proved as good and working.
And this second team proceeded and recreated the whole code
and a new architecture was adopted. Both [architectures]
worked.

In this case, there was thus one architecture that had been
defined by the previous architect and that was market indepen-
dent. This architecture was supported by one team. However, there
was another team who wanted to change this architecture because
they wanted to use a framework from the market. In this case, the
solution architect was not able to negotiate with the different
teams, therefore the architecture was changed.

5.3. The interdependencies among different architect roles

The categories ‘‘Interaction among architects’’ and ‘‘Interactions
with other stakeholders’’ were compared and related with the cat-
egories of each architect role and the ‘‘Collaboration’’ category dur-
ing axial coding. During selective code, they were linked to the
main category (‘‘Transformation’’) as a way to describe the theory
we were developing. Based on that, we observed that IT architects
interact among themselves in addition to interacting with very
specific sets of stakeholders. Their activities are interconnected;
they depend on each other’s work in different ways. In summary,
they receive information from different groups of stakeholders,
perform their own work using this, and additional information
they seek, and then pass a different type of information along to
the next architect. The following quote from Company A illustrates
this aspect.

‘‘This person [enterprise architect] talks about requirements, but
in an open way, nothing really defined. The requirements are
like ‘I think we need to increase product scalability’ and she/
he does not say what in scalability we are going to increase,
or how we are going to do it (. . .). But she/he elaborates [the
requirements] together with the customers (. . .) and she/he says
‘It is important to have a greater scalability’ and then the
people ‘below’ him/her [the solution and software architects]
can understand what we are going to increase [an activity from
the solution architects] and how we are going to do it, which is
the technical architect [i.e., the IASA software architect] part,
where I work. So, this is the difference: the enterprise architect
works at the higher level and she/he looks basically to how the
industry is, and with that she/he is going to propose and seek
solutions, pointing directions... So she/he sees market tenden-
cies and says ‘everybody today is working with VMWare; virtu-
alization is important, so we must increase virtualization
support’, then the person here [the solution architect] is going
to say ‘yes, this is true, there is a large number of clients who
demand it’ and we go in this direction. Then, the other person
[the software architect] refines the focus. This is the division
according to the scope: the enterprise architect is broader and
less specific, while the technical architect [the IASA software
architect] is the lower level and is focused on the specific prod-
uct; she/he is going to see how this product attend the direc-
tions that the higher level person [the enterprise architect]
points. (. . .) There must be an alignment between these two
dimensions in order for the product to be really agreed upon
and from this point on to create a product roadmap where the
main enterprise architect is focused on guaranteeing that what
she/he directed is correct, validating it with customers (. . .)
while the others [the solution and software architects] are
focused on really developing the product to successfully fulfill
this agreed roadmap.’’ – Interviewee 1, Company A.
Therefore, enterprise architects develop the architectural prin-

ciples [9] that will guide all projects in the organization (based
on their interaction with a very specific and high-level group of
stakeholders, e.g., the CEO and CIO). These architectural principles
are very important to the solution architects, since they need to
follow these principles to produce the architecture of each specific
project of the organization. Thereby, the solution architect designs
the overall solution of one project and then, this solution is divided
in order to be developed. Each ‘‘part’’ of the overall architecture is
refined by one software architect that works closely aligned with
software developers. To be more specific, the following quotes,
assigned to ‘‘Interactions among architects’’, ‘‘Solutions architect’’,
and ‘‘Software architect’’ categories, are examples of how the solu-
tion architect influences the work of the software architect:

‘‘He [the solution architect] is not going to model a system, he is a
person who wants to know where it came from, where it goes,
where it fits in the world, why my customer is or is not going to
use it, which are the high level use cases. He/she is hanging out
with the customers, saying where the possibilities are, and he
just says to us ‘this is what needs to be done’.’’ – Interviewee
1, Company A.
‘‘He [the solution architect] is floating with the customers [i.e.
directors or architects from the customer] saying where are
the possibilities and he just shouts to us [the technical archi-
tects who are equivalent to IASA software architects]: ‘this is
what must be done’. Then, I am a technical architect, I do every-
thing we learn in college, like use cases, diagramming, . . .’’. –
Interviewee 1, Company A.

Finally, software architects need the overall architecture
definition to perform their own work, i.e., to refine the architecture
and guide developers through its implementation. In fact, it is not
unusual fort one project to have more than one software architect
as discussed below:

‘‘When a contract involves many areas, i.e. it involves a server
part, a storage part, a network part and so on, each of these
parts has a solution architect. They work focused for example
in the storage part that is huge by itself. Then, inside the stor-
age part there are other technical architects [IASA software

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1243
architects], who work within the products that will form a niche
represented by the storage area of the project’’. – Interviewee 1,
Company A.

Considering these interdependencies, it is possible to notice
that the different architect roles still need to collaborate even with
the division of labor (which explains the multiple categories
assigned to some quotes, ‘‘Collaboration’’ included). In other
words, in addition to having to manage the dependencies between
their artifacts, it is also important to highlight that the different
architecture roles work closely together. This means that the
description of the work performed by the different architect roles
does not represent a waterfall model or a hierarchy; but instead,
different architect roles collaborate with each other. This situation
is clearly illustrated in the following quote where Interviewee 1
highlights the interdependencies that exist in the work of the dif-
ferent architect roles:

‘‘In a solution developed for an [external] customer, the enter-
prise architect will be involved. As we [technical architects] are
closer to the development team, we are responsible for develop-
ing products that have a lifeline. So, since this lifeline was cre-
ated, there is a parallelism among the 3 architects [enterprise,
solution and technical], because there is someone looking for
marketing tendencies, there is another one taking care of the
portfolio of that specific situation, and a third one who is wor-
ried about developing everything agreed on with the ‘‘superior’’
architect [the enterprise architect]. So, there is a parallelism [in
the tasks], but the three [architects] are working together and
have contact points’’ – Interviewee 1, Company A.

These ‘‘contact points’’ mentioned by Interviewee 1 are usually
meetings where all architects, program managers, managers of the
business units, and members of the marketing team participate as
a core team to contribute to the decision-making (this information
was thus assigned to the category called ‘‘Good Practices’’). These
meetings take place many times during the project, especially at
the milestones. So, despite the fact that each architect role has
his/her specific activities, they need to interact considerably.

5.4. Tool support for architects’ work

One aspect that we observed with special attention was the
usage of tools by different IT architects. Therefore, we first had
one category called ‘‘Tools’’ to assign all related excerpts, but then
we noticed the need to create a different category for assigning
excerpts about documentation, which was named ‘‘Documenta-
tion’’. During axial coding it was possible to relate both categories,
and then in selective coding we associated this relationship with
our main category according to our theory. Broadly speaking, our
results suggest two aspects. First, the observed organizations tend
to use a mix of tools, usually very simple ones. And second, the
documentation produced in these organizations tends not to be
very formal. In the rest of this section, we will focus on aspects that
illustrate the problems faced by IT architects because the tools they
use do not support important aspects of their work.

In the first quote, Interviewee 1, a software architect, explains
how she/he passes information to the requirements team. She/he
speaks in the same quote both about tools and documentations,
already indicating the relation among the categories. In this inter-
viewee’s opinion, it is more important to transfer information in a
standardized way to the development team, than for this informa-
tion to arrive standardized to him/her, especially concerning
requirements. If the information transfer to the development team
happens in a standardized way, this facilitates this team’s
understanding of the information and eliminates some of the
‘‘burden’’ of the architect, who has to explain in details what the
requirements mean. To address this issue, his/her team created a
template for the requirements and used a tool to manage them
in his/her current project.

‘‘In the project we are working on today it is a bit better [com-
pared with previous projects] because we dedicated a certain
time to standardizing the requirements and creating a template
for requirements. And we started to use a tool for requirements
management to improve this . . . and the template to improve
the understanding of the requirements. We have had some
improvements, but we are still far from what we would like.
Today the development team still has to suffer considerably
to better understand the things they receive.’’ – Interviewee 1,
Company A.

In the literature there is some evidence regarding the use of
tools to facilitate the spread of information within software devel-
opment teams. As an example, Lopes et al. [37] suggested a strat-
egy to document requirements using natural language based on
English. The idea behind the proposal was that distributed teams
could use an English-based template to document the require-
ments and use this globally using the same template.

In the context of Interviewee’s 1 project, as mentioned, they use
both the template and the tool for requirement management to
help in the transformation process, making the information easily
understood by the development team. However, as Interviewee 1
argued, this is not enough, which led us to relate these two catego-
ries to the ‘‘Problems/Difficulties’’ category.

Another issue raised in Company A comes from the fact that this
is a multinational company with employees performing different
architect roles spread around the globe. It is therefore really impor-
tant for them to have mechanisms to support these architects’
activities, especially their interdependencies, given the geographi-
cal distance among them. Interviewee 1 mentioned the tool used
for requirements management:

‘‘We are using [Tool A] here [at Company A]. This tool imposes a
work flow chart that I will use. There is already a process for
controlling requirements and project changes; this tool helps
us with that. It helps to create a requirement inside it and
makes it easier for remote teams to review these requirements.
It is a big issue for the [Tool A] us [the remote teams for doing
online reviews] (. . .). The ideal is to have more offline work.’’ –
Interviewee 1, Company A.

‘‘For me this is a key point to this tool [Tool A] achieve success:
to be able to adapt to the project reality. And if the project is
distributed the tool needs to support it’’ – Interviewee 1, Com-
pany A.

According to the interviewee, this tool has the potential to facil-
itate distributed reviews producing more effective meetings: peo-
ple (not only architects) would go to meetings knowing the issues
to be discussed. This would provide a better use of participants’
meeting time, given that they are distributed and it is not easy to
bring them together into a meeting (especially the architects). If
people go to meetings unprepared, important aspects might not
be properly discussed and could re-appear later in the project caus-
ing rework and delays. It also shows the relation of ‘‘Tools’’ and
‘‘Documentation’’ categories with the ‘‘Collaboration’’ category.
Furthermore, in the literature one can find several studies regard-
ing the use of tools to support requirements review sections. For
example, in the work of Calefato et al. [38], the authors developed
a tool called eConference and have conducted several experiments
in order to evaluate the feasibility of the tool for distributed teams.

However, Interviewee 1 also points out that people lack the moti-
vation to use this tool (again showing the relation among ‘‘Tools’’
and ‘‘Documentation’’ categories and ‘‘Problems/Difficulties’’

1244 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
category). So, although this tool has the potential to help in several
aspects, it is not always effective. On the other hand, Company C
has adopted a tool that stores the documentation and provides
traceability among the different types of documentation, as illus-
trated in the following quote:

‘‘The idea is that all the project documentation should be stored
within Tool C, divided by sections. And as the project evolves,
the types of diagrams, the models evolve too, always keeping
the connections [i.e., the traceability] in order for the developer
to be able to go from his class to, for example, a non-functional
requirement that is implemented by that class’’ – Interviewee 4,
Company C.

Despite the usage of Tool C, all interviewees consulted in this
company confirmed they still have problems with requirements;
mostly problems concerning changes that cause rework (which
strengthens the relation among ‘‘Tools’’ and ‘‘Documentation’’ cat-
egories and ‘‘Problems/Difficulties’’). As happens in Company A,
revisions and a better use of meeting time would help to avoid this
problem, information that was recovered from the ‘‘Good prac-
tices’’ category.

Another interesting point that we observed is that most of the
organizations we studied tend to use common documents and
wikis to create and maintain the different ‘‘architectures’’ (espe-
cially the software architecture) and the associated documenta-
tion. This is illustrated in the following quotes (assigned both to
‘‘Tools’’ and ‘‘Documentation’’, but also to ‘‘Good Practices’’).

‘‘Basically, we use a flowchart where we have the system
behaviors. It is composed of macro boxes that are opened later
in another similar diagram, detailing the logic of the program
operation (. . .). If something is not clear in the diagram, we
put it in a document. And we use a wiki (. . .). To me it is
documentation that is easy to do and to understand and is really
useful. (. . .) I do not like to be stuck with a tool: we use wiki, we
use power point and we use [Tool E]. We use a white board with
pictures too, which is really good for documenting many
things’’. – Interviewee 7, solution architect, Company E.

‘‘We have a tool for project management called [Tool D]. [Tool D]
works integrated with risk management, a wiki and other tools
related to project management. We have customized what we
call trackers, which are similar to bug tracking tools. We have
trackers for architectural aspects, for architectural require-
ments. We get this documentation and store it in the wiki.
Our artifact is the wiki’’. – Interviewee 18, solution architect,
Company D.

As mentioned before, Company D is in the ‘‘Partially defined
roles’’ group, which means that Interviewee 18 is a solution architect
who also performs enterprise architecture activities, while a senior
developer performs the activities of a software architect (see
Section 5.1). The trackers mentioned by this interviewee are used
by both the solution and the software architects (showing the
relation between ‘‘Tools’’ and ‘‘Interaction among architects’’
categories). For instance, if a new architectural requirement arises,
the solution architect performs his/her activities (related to an over-
all definition of how this new requirement affects the overall archi-
tecture) and uses the tracker to delegate the task (related to the
requirement refinement) to a software architect, who is going to per-
form his/her tasks and them pass it along to the development team.

The use of wikis and common documents is well documented in
the literature. For example Prikladnicki and Carmel [39] found that
companies usually use several tools for collaboration. This includes
screen sharing, project management and configuration manage-
ment tools, global repositories, continuous integration and bug
reporting tools, and wikis.
Some companies use more specific tools, but usually either this
tool does not attend to all their needs or the tools need to be cus-
tomized by the organizations and be used alongside additional
tools. For example, company D uses Tool D that is a project
management application which, among other features, presents a
flexible tracking system. This company has adapted this tracking
system to support architecture activities (among others), as
described in the quote:

‘‘We have customized what we call trackers, which are similar
to bug tracking tools. We have trackers for architectural aspects,
for architectural requirements’’. – Interviewee 18, solution
architect, Company D.

Meanwhile, Company E uses Tool E, which is a diagramming
tool, not a tool specific for IT or software architecture. Company
C uses Tool C, which is a tool for architecture. The specification
of this tool claims it has features related to requirements manage-
ment, business process modeling and enterprise architecture
frameworks (among others). However, as mentioned before the
interviewees of this company also complained about problems
with requirements, changes and rework.

5.5. Summary of key findings

This section briefly summarizes our key findings, introducing
aspects that will be addressed on the next section. Our first result
is the fact that all studied organizations adopt a well-defined divi-
sion of labor, i.e., there are different types of IT architects. These
organizations formalize these types of architects in different ways:
in some organizations the roles are well-defined, while in others
they are non-defined, informal and ad-hoc. Second, each IT
architect performs both technical and non-technical (mostly
communication and coordination) activities. Third, each type of
IT architect interacts with a particular set of stakeholders and as
a consequence deals with different types of knowledge. Fourth,
our results also indicate that IT architects collaborate among them-
selves because their work is highly interdependent, i.e., the work of
each IT architect influences and is influenced by their colleagues.
This means that IT architects spread information they acquire from
a specific set of stakeholders to other IT architects. In other words,
the different IT architects are responsible for the communication
flow and information diffusion within the organization. In so doing,
IT architects help the organization to achieve a common under-
standing about the project. This understanding is not trivial since
the information that flows in the organization might come from
or be directed at different stakeholders, therefore being misinter-
preted. IT architects avoid misunderstandings by ‘‘processing’’
the information they receive from another IT architect or stake-
holder in such a way that this information becomes comprehensi-
ble by other architects and/or stakeholders. Finally, given the
importance of a common understanding about the IT architecture,
one would expect that the IT architects would have different tools
to support their work. However, our last result suggests that
current tools used to support the creation and management of
IT architectures provide limited support for the way the IT archi-
tects work. All these aspects are discussed in the following
sections.

6. Discussion

6.1. It architecture and knowledge management

As we illustrated in the previous section, the process of devel-
oping a large information system involves different stakeholders
with different requirements, interests and priorities. In such a
complex scenario the presence of many different organizational

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1245
boundaries that need to be navigated is not a surprising. In
particular, we are interested in knowledge boundaries, as discussed
by Carlile and Rebentisch [26]. Knowledge boundaries are bound-
aries created when there are different and specialized knowledge
domains and the individuals of these domains need to interact
and exchange information [26]. For instance, Carlile and Reben-
tisch illustrate this problem by discussing how engineers from
different groups (styling, engine and power-train, climate control
and safety) need to interact to design a new vehicle. Furthermore,
there are different ‘‘types’’ of boundaries. In a syntactic boundary,
the differences and dependencies among actors are known and
the knowledge is not so specialized. In this scenario, a common
syntax or knowledge is sufficient to specify the differences and
dependencies, and then the information can simply be transferred
across the boundary. A semantic boundary occurs when different
knowledge domains generate differences in interpretation, thus
creating discrepancies of meanings. In this case besides a common
syntax, it is necessary to establish a common semantic in order to
identify and translate these different interpretations and depen-
dencies among the different knowledge domains. Finally, when
the knowledge domains are so specialized that they generate
different interests, building common knowledge to be shared
among the groups becomes a political process. This is an exam-
ple of a pragmatic boundary. In this case, both groups need to
adjust and transform their current way of performing their
activities and their knowledge in order to accommodate the
knowledge from the other group and thus to collaborate in the
boundary. In other words, to learn, one needs to transform his/
her own knowledge [26].

Fig. 2 illustrates the idea of knowledge domains in the context
of our dataset. More specifically, Fig. 2 (based on Fig. 1) portrays
how each architect role receives information from different groups
of stakeholders, performs his/her own work using this and other
information and then passes a different type of information along
to the next architect. Based on our analysis presented in the previ-
ous sections, Fig. 2 also identifies the boundaries between the dif-
ferent knowledge domains. These include syntactic, semantic, and
pragmatic boundaries.

The first knowledge domain, the organizational, includes actors
such as CIOs and CEOs and embraces knowledge about planning,
contracts, business deals and partners, i.e., management. The mar-
keting experts bring knowledge about the market, competitors,
and market tendencies. These two aspects of management and
marketing have the same focus: the organizational aspects that
influence the creation of an IT solution. In the functional domain
are included business specific knowledge and focus on the
Fig. 2. Knowledge spheres a
functionalities that the information system needs to implement.
This information is acquired by analysts (e.g., requirement ana-
lysts) who need to deeply understand the clients’ domain. In other
words, both analysts and clients are in the functional knowledge
domain. Finally, the knowledge domain in which the software
developers are embedded embraces programming languages, tools,
frameworks, development patterns, etc. In other words, this
domain embraces technical knowledge.

These three knowledge domains represent the main special-
ized domains in the development of information systems, there-
fore they also indicate the knowledge boundaries that need to
be crossed in IT projects, i.e., in order to fully develop a software
system it is necessary to combine knowledge of these different
domains. As we can observe in Fig. 2 each domain has a set of
actors associated with it, but also an associated IT architect: the
enterprise architect in the organizational domain, the solution
architect in the functional one, and the software architect in the
technical domain. These architects are the ones who combine
the knowledge of these domains for the successful development
of an information system. Using Carlile’s [29] terminology, IT
architects transfer, translate and transform knowledge across these
boundaries. Furthermore, each architect is responsible for ‘‘man-
aging’’ the boundaries of a knowledge domain according to the
type of IT architect. This is done by sharing information and col-
laborating with the IT architect from the other knowledge
domains in such a way that the important information from
one domain (e.g., the marketing team) is transferred, translated
or transformed into something meaningful for another domain.
An example of transferring knowledge can be identified when
Interviewee 1 from Company A mentions that they standardize
the way their requirements are presented using a template.
This was mentioned in Section 5.4, but we will repeat part of it
here:

‘‘It is a bit better in the project we are working on [compared
with previous projects] because we dedicated a certain time
standardizing the requirements and creating a template for
requirements. And we started to use a support tool for require-
ment management to improve this management and the tem-
plate to improve the understanding of the requirements.’’

Another example of transferring was mentioned at the end of
Section 5.2 when we discussed the meetings held specifically to
make sure different stakeholders understand and use the same
terminology. In both cases, the idea is to create a common syntax
among the different stakeholders to specify the differences
and dependencies among them, and by doing so, allot these
nd the architect roles.

1246 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
stakeholders work together and knowledge can be transferred
across the boundaries.

However, this is not enough: IT architects also need to translate
knowledge across boundaries. The translation occurs, for example
when, the enterprise architect aggregates information from cus-
tomers, marketing experts and other stakeholders to make sure
she/he has the ‘‘right’’ information that is then passed along to
the solution architect. This is clearly represented by the quote of
Interviewee 1 presented in Section 5.2, and repeated here:

‘‘What changes is the stakeholder ‘level’ with which each [IT
architect] interacts. The enterprise architect talks more with
CIOs and CEOs. The solution architect will talk with an architect
from the other side [company] or with directors from the other
side. And the technical architect interacts more with [software]
developers. (. . .) And they communicate among each other’’. –
Interviewee 1, Company A.

Each architect thus translates the knowledge of the different
stakeholder groups inside each main knowledge domain repre-
sented in Fig. 2. However, it still is necessary to share knowledge
through the three main domains, but they have become too spe-
cialized and a simple translation is no longer enough. It is also nec-
essary to transform knowledge across the boundaries. IT architects
perform this activity when they interact with each other, negotiat-
ing and passing along the knowledge of their domain. The quote
from Interviewee 1 repeated above illustrates this when he says
‘‘and they communicate with each other’’. The negotiation aspect
of the knowledge transformation is also illustrated in the following
quote excerpt, repeated from Section 5.3:

‘‘(. . .) This is the division according to the scope: the enterprise
architect is broader and less specific, while the technical archi-
tect is the lower level and is focused on the specific product;
she/he is going to see how this product attend the directions
that the higher level person [the enterprise architect] points.
(. . .) There must be an alignment between these two dimen-
sions in order for the product to be really agreed upon and from
this point on to create a product roadmap where the main
enterprise architect is focused on guaranteeing that what she/
he suggested is correct, validating it with customers (. . .) while
the others [the solution and software architects] are focused on
really developing the product to successfully fulfill this agreed
roadmap.’’ – Interviewee 1, Company A.

With this process, a common knowledge can thus be created
and shared through the whole project. If this transformation (and
the negotiation within it) does not occur, it can generate some
problems in the project as discussed at the end of Section 5.2.
The quote, by Interviewee 2 from Company B, illustrates how
knowledge from the functional and technical domains was so spe-
cialized that it needed to be negotiated, i.e., there was a pragmatic
boundary. However, the teams in these domains were not able to
negotiate a single software architecture and, in the end, had two
different architectures to solve the same problem. We argue that
if both teams had adjusted and transformed their knowledge this
kind of problem would have been avoided.

6.2. It architecture and software architecture

At this point, it is important to discuss our results in the context
of previous research into the work of IT and software architects. To
begin with, we need to mention the very relevant work of Grinter
[4]. She performed a qualitative study about software architects
and concluded that these professionals act as ‘‘boundary spanners’’
helping to create and maintain the common knowledge every
development project needs. Our research extends her work by
considering the overall IT context. In other words, what Grinter
observed for software architects is also true for other types of IT
architects. In addition, we explain how IT architects transform
knowledge from one domain to another so that it is possible to
develop an information system in large organizations taking into
account constraints, standards, patterns and other technical and
organizational aspects.

Similarly, Unphon and Dittrich [23] describe a different qualita-
tive study, in which they report that the (software) architecture
usually exists implicitly in discussions during software develop-
ment, with no huge effort in documentation. They report that the
software architect acts as a ‘‘walking architecture’’: she/he commu-
nicates the architecture to developers and, in turn, communicates
problems to the right stakeholders [22]. In short, they illustrate
how software architecture in practice emphasizes communication
rather than documentation.

We argue that this paper extends the results of these two stud-
ies. First of all, our data illustrates that every IT architect needs to
work as a ‘‘boundary spanner,’’ not only software architects. Each
IT architects needs to handle communication and coordination
within his/her knowledge domain: because architecture activities
are divided, the associated interactions and communication are
also divided so that each role interacts with different groups of
stakeholders. Second, the different IT architect roles need to collab-
orate among themselves to get their work done. Third, in every
company we studied we observed the importance of communica-
tion rather than documentation, not only for software architects,
but for IT architects as well. This means that these companies
had several ‘‘walking architectures’’, instead of a single one. Finally,
the lack of documentation and appropriate tool support are men-
tioned by the informants as problematic.

Another related work was discussed by Smolander [3,33] who
conducted interviews with what he regarded as the most central
roles in software development: designers, architects, managers
(project, department, technology, and process development man-
agers), and customers. Smolander identified four metaphors for
software architecture that are used by the different stakeholders:
architecture as blueprints, as literature, as language and as deci-
sion. He also identified that the meanings related to architecture
varied according to the position and background of the person
interviewed, and so argued that different groups of stakeholders
use different metaphors. For instance, designers often use the blue-
print metaphor, but do not even recognize the language one. Smo-
lander then concluded that these metaphors implicate in ‘‘many
and even mutually conflicting perspectives of architecture to be
described’’ and that these conflicts should be considered for any
development process and method used in organizations [3]. He
then argued that architecture should be approached as a ‘‘vehicle
for achieving common understanding’’ [33].

Although Smolander’s focus was on software architecture, his
conclusions and our data allow his results to be extended to IT
architecture as well. For instance, software architects are closer
to software implementation, so the blueprint metaphor is more
related to them; the architecture as a decision metaphor is more
related to management roles, so it is more useful to enterprise
architects, since they are closer to the high management of the
company; and the architecture as literature metaphor focuses on
the reuse of components and because of that can be related to both
solution and/or enterprise architects. Finally, the architecture as
language metaphor is important to all IT architect roles, because
one of their main tasks is to guide the transformation of customer
needs into technical aspects that developers can effectively use in
their work.

All the previous works are related to studies of software archi-
tecture in practice. However, it is also important to relate our work

4 Although some of the companies we studied used some the tools mentioned in
the previous paragraph.

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1247
with that of requirement analysts, especially in how they manage
non-functional requirements. For instance, Ameller et al. [34] stud-
ied software architects through interviews. Their results suggest
that the role of software architect was not formalized in the 13
companies studied: the person who performed software architects’
activities was chosen according to his/her technical ability and
experience in the project domain. In addition, these ‘‘architects’’
could not identify their activities as software architecture activities
because they overlapped with other activities they performed. In
addition, non-functional requirements (NFRs) were mainly elicited
by these ‘‘architects’’. In 10 out of the 13 projects discussed in the
interviews, the software ‘‘architect’’ was the main source of the
NFRs. In the three other projects the clients elicited NFRs. These
projects were all outsourced projects, and even with clients work-
ing in the NFR elicitation the architects also played an active role in
completing the definition. Ameller et al. [34] also identified
communication problems concerning the meanings of words, espe-
cially with regard to the definition of types of NFRs. We believe this
is a problem related to the syntactic boundary, when knowledge
needs to be transferred across this boundary. Finally, they also
found that NFRs were often not documented, and when they were,
the documentation was not precise and usually became desyn-
chronized. In other words, Ameller’s and colleagues’ results are
similar to ours. They reported aspects of communication (instead
of documentation), knowledge transfer, and the important work
of software architects in identifying (non-functional) require-
ments. In addition to these results, we also report how the work
of the software architect is related to the work of other IT
architects and the translation and transformation work conducted
by different IT architects.

To summarize and conclude this section, our results suggest
that IT architects act as boundary spanners [4], they work along
the boundaries of knowledge domains by facilitating knowledge
transfer, translation and transformation among different group of
stakeholders. This is achieved by a division of labor in which IT
architects have different roles, and each role is located in a knowl-
edge domain. By so doing, each architect role is a ‘‘walking archi-
tecture’’ [23] and can be associated with a particular software
architecture metaphor [33].

7. Supporting it architects

As previously mentioned before (see Section 5.4), we were
interested in understanding the tools used to support IT architects.
In this section we discuss this aspect in more details.

Based on what our interviewees argued about tool support, we
performed a literature review to identify some of the tools avail-
able for IT architects. We wanted to understand whether current
tools would provide adequate support for the work of the IT archi-
tects. We identified several tools and strategies that aim to support
their work. For instance, there are initiatives such as the Zachman
Framework for Enterprise Architecture [13], which is a two-dimen-
sional classification scheme that provides a structured way to rep-
resent an enterprise [16], the EPBE (Eriksson–Penker Business
Extensions), a UML extension to enable the use of UML for model-
ing business [14], and the BPMN (business process management
notation), which is a flowchart-based notation for specifying busi-
ness processes [15].

The problem with the aforementioned approaches is that they
focus on one (or only a few) type(s) of architect(s). When tools
focus on more than one level, this is done without taking into
account the interconnections among them [18]. There are, how-
ever, other approaches that aim to support the different types of
architects in a more integrated fashion. The TOGAF framework
[17] is an example of this case. It is an architecture framework that
‘‘provides methods and tools for assisting in the acceptance,
production, use, and maintenance of an enterprise architecture’’.
The phases of this framework seem to encompass activities of all
main architect roles, because they support architecture activities
at both the organizational and technical levels (with focus on
ongoing projects).

A different approach presented by Schekkerman [18] is an
architecture tool selection guide that compared many architecture
tools verifying their compliance with aspects such as governance,
risk, program management, business/IT strategy, among others.
According to his results, tools such as Alfabet Planning IT and
IBM-TeleLogic System Architect Family + Rhapsody seem to attend
to most of the mentioned aspects, i.e., they provide some level of
support for all four architecture roles. On the other hand, tools such
as Sparx Systems Enterprise Architect and IBM Rational Software
Architect seem to be more related to solution and software archi-
tecture activities [18].

Despite that the availability of different types of tools, in the
field we observed a great usage of very simple tools such as wikis.4

We noticed that wikis provide an easy mechanism to allow access to
and changes in the architecture (including its requirements), and
they were therefore well received by the architects. One of the
advantages of the wikis is their flexibility, i.e., wikis are not associ-
ated to a particular modeling language or with particular formats
of documents. They are flexible enough to allow any architect role
to pass on any type of information she/he thinks is relevant to
another architect or stakeholder. Another advantage of wikis is that
they are lightweight and versatile platforms that better adapt to the
technical and non-technical activities architects perform [22]. On the
other hand, because they are so generic, wikis provide limited sup-
port for the interdependencies among architecture roles. Some of
the studied companies, e.g. Company D, use customized trackers that
can partially address this gap, but this is dependent on the users’
adoption.

Finally, there is another aspect that could potentially influence
IT architects’ activities and should be approached by tools or
strategies that aim to support them: software traceability. Spano-
udakis and Zisman [25] describe software traceability as ‘‘the
ability to relate artifacts created during the development of a
software system to describe the system from different perspec-
tives and levels of abstraction with each other, the stakeholders
that have contributed to the creation of the artifacts, and the
rationale that explains the form of the artifacts’’. One of the many
advantages of traceability is that it provides an understanding of
project artifacts in reference to the context in which they were
created or in reference to other artifacts. This understanding is
particularly important when people who contributed to the crea-
tion of the artifacts are not the same ones who need to under-
stand those artifacts [25], and also in information system
development where architects are the ‘‘walking architectures’’:
the main source of information in system development projects
[3,4,23]. In short, traceability tools can be used to relate a system
from its requirements and commercial aspects to the source code,
indicating the path used and the decisions made during system
development and providing support to activities of different
stakeholders.

As we discussed in the beginning of this section, we were not
able to find tools that support traceability aspects among the
different architect roles activities. Nevertheless, even the wiki,
trackers and requirements issues discussed above can be related
to traceability issues and, thus, could be supported by a tool that
better address traceability activities. For instance, the trackers
used by Company D and others provide an initial support to

5 In other words, Klein and Myers [35] argue that interpretive qualitative research
should aim for providing theoretical generalization instead of statistical generalization.

1248 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
traceability activities, since they can be used to delegate activities
from an architect role to another and, consequently, offer support
to one architect role to track the activities developed by the pre-
vious architect. On the other hand, wikis can store the whole evo-
lution of system artifacts, since stakeholders can store any kind of
artifact (though it depends on the people to properly use it). Both
trackers and wikis can help in problems related to connecting
requirements management and IT architecture activities, but they
provide only an initial support to it. Future tools should also use
the information provided by trackers and stored in wikis to
generate and store traceability items and links in a more automa-
tized way in order to reduce the effort necessary to create
traceability information [25]. Thus, a traceability tool that aggre-
gates these characteristics considering architect roles interconnec-
tions would not only support the boundary spanner aspect of
architect activities, but also improve traceability and daily work
for architects.

8. Limitations

In this section we describe the limitations of our research. In
quantitative studies this is traditionally done by describing aspects
regarding the construct validity, external validity and internal
validity of the study. However, Klein and Myers [35] argue that
some criteria that are useful for evaluating research conducted
according to the natural science model (positivist research) are
inappropriate for judging interpretive research. We believe that
is exactly what happens with construct validity, external validity
and internal validity: they are criteria that are useful for judging
positivist research, but not interpretive and qualitative research.
Therefore, we will not report these aspects in this paper. However,
‘‘it does not follow that there are no standards at all by which
interpretive research can be judged’’. In fact, Klein and Myers
[35] present a set of seven principles that they argue might be used
to conduct and evaluate interpretive field research. Below, we will
describe how the research described in this paper observes these
principles.

The first principle, the hermeneutic circle, suggests that all
human understanding is achieved by iterating between consider-
ing the interdependent meaning of parts and the whole that they
form. In our case, this was achieved by shifting the focus of anal-
ysis from the work performed by one IT architect to the overall
context of the work performed by all the other architects. As
we discussed in Section 4, the organization of the IT architects’
work was not our original focus, but evolved from the data collec-
tion and analysis we conducted. The second principle focuses on
the contextualization, i.e., the ‘‘historical, political, and economic
context’’ in which the study was conducted. In our case, since
there were nine different companies in which the data was col-
lected, we opted for describing the context only for the compa-
nies in which this aspect was relevant. For instance, at the end
of Section 5.1 we describe the context of companies F and G
because they have similarities. The Principle of Interaction
Between the Researcher and the Subjects is the third one and
requires critical reflection on how the research materials were
socially constructed through the interaction between the
researchers and participants [35]. This means, for instance, that
it is important to document ‘‘the ways in which data collection
and interpretation activities affected each other’’ (ibid.). We
believe this aspect was described in rich details in Section 4.3
where we described each iteration of data collection and analysis.
The following principle, abstraction and generalization, argues
that interpretive researchers should ‘‘generalize their findings to
theoretical constructions of interest’’. In this paper this is done
through the usage of Carlile’s 3T’s [29] framework for knowledge
management. By using this framework, we were able to propose a
theory of how IT (and software) architects perform their daily
work.5 In addition, when we discuss our results in the context of
previous research (Section 6), we find additional evidence support-
ing our theory.

The fifth principle, the Principle of Dialogical Reasoning requires
sensitivity to possible contradictions between the theoretical pre-
conceptions guiding the research design and actual findings (‘‘the
story which the data tell’’) with subsequent cycles of revision. Its
most fundamental point is that ‘‘the researcher should make the
historical intellectual basis of the research as transparent as possi-
ble to the reader’’. As we described in Section 4.3, in our study we
initially began studying the work of software architects in distrib-
uted projects, assuming that the work of such architects would be
different from software architects working in collocated projects.
As we collected data we changed the focus to software architects
in general, and then to IT architects. In other words, we described
our original focus on distributed software development and how
this focus changed over time. The sixth principle, the Principle of
Multiple Interpretations, requires sensitivity to possible differ-
ences in interpretations among the participants as are typically
expressed in multiple narratives or stories of the same sequence
of events under study. In other words, this principle emphasizes
the importance of documenting the views of other interest groups.
We addressed this aspect by interviewing professionals who were
not formally employed as IT architects, but who performed
architectural related activities. These professionals also worked
in different companies. Moreover, we reviewed the results from
the interviews, comparing with the partial research results. Finally,
the suspicion principle recommends that ‘‘authors adopt a critical
perspective and do not take their informants’ views at face value’’
(ibid.). In this case, as we described in our methodology section,
we argue that we addressed this concern using theoretical sam-
pling [5], i.e., by choosing informants that could either extend or
question our theory in each new data collection period.

Furthermore, as we described in Section 4.3.4 we performed
member checking, i.e., we validated our theory by presenting it both
to employees of different organizations and to new employees of
organizations in each of whom we had already collected data to
verify whether our theory would apply to them. Interviews were
audio-taped and transcribed and we documented our analysis pro-
cess so as to create an audit trail. These two mechanisms, member
checking and audit trail, are two important mechanisms used to
minimize threats to validity in qualitative research [36].

Finally, it is important to mention that due to constraints of
time and resources, we did not reach theoretical saturation [5],
which means that we cannot argue that our theory is fully
‘‘developed in terms of density and variety’’. In other words, our
theory might vary under some circumstances. For instance,
organizations might adopt different types of architects who per-
form different roles. Despite that, we are still confident in our
results for several reasons. First of all, we have described our con-
cern and approaches to guarantee the validity of our theory and
results in this section. Second, as discussed before, the results of
our theory are to some extent validated by previous related work.
And, finally, our theory explains what we observed in our data,
allowing us to perform a theoretical generalization. We believe this
might provide an important starting point for further research.
9. Conclusions and future work

We studied IT architects aiming to understand how they
performed their work in practice. In order to do so, we adopted a

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1249
qualitative approach based on semi-structured interviews and
grounded theory. We conducted twenty-seven interviews with
twenty-two informants from nine different companies divided into
four iterations of data collection and analysis. Each iteration of data
collection and analysis refined our understanding of their work,
allowing us to conduct new interviews that could extend or ques-
tion our results. At the end of the process, we validated our results
with IT architects who either work for the companies studied or
work in different companies.

In our interviews, aligned with IASA’s suggestion, we noticed
that organizations divide the IT architecture activities among dif-
ferent architect roles. Each role performs specific activities and
engages in communication and coordination with specific stake-
holders. IT architects also heavily depend on one another to per-
form their work. In addition, they act as boundary spanners in
the organization, each one dealing with stakeholders from one
domain and providing information for another role in a different
domain. To be more specific, IT architects transfer, translate and
transform [29] knowledge across different boundaries facilitating
the diffusion of knowledge about the software system being built.
Our research highlights the importance of the interconnections
among architect roles and, as a consequence, the limited support
for these interconnections provided by current tools. Overall, we
argue that any approach (tool, framework, or modeling language)
that aims to properly support architecture activities also needs to
provide support for the interconnections and collaborations among
the different architect roles. Currently, most architecture tools tend
to address these roles separately, and usually do not support all
different roles.

Although we did not find one same person playing more than
one role in the same project, this is possible. We only found the
case of a person playing her/his role and performing some activi-
ties of another role (as it happens in companies in the group called
‘‘Partially defined roles’’), but not all of them. Further research is
needed to better explore this scenario and to analyze its implica-
tions for collaboration and information flow.

Finally, it is important to mention that in some companies an
enterprise architect is not a formal role, but since the activities of
this type of architect still need to be performed, they are performed
by the solution architect alongside with his/her own activities. This
is an interesting aspect because it means that less collaboration is
necessary because only one person is doing the work. On the other
hand, it might mean that this same person might be overwhelmed
by the amount of work she/he needs to perform. This is a particu-
larly interesting because it might affect the design of tools to sup-
port IT architects.
Acknowledgments

This research received funding from CNPq through the ‘‘Edital
Universal 2008’’ Process Number 473220/2008-3, FAPESPA
through ‘‘Edital Universal’’ number 003/2008 and Edital 014/
2008 (project ‘‘Rede Paraense de Pesquisa em Tecnologias de
Informação e Comunicações’’), from CAPES through a M.Sc. schol-
arship granted to the first author, and from the PDTI program,
financed by Dell Computers of Brazil Ltd. (Law 8.248/91). The fifth
author was also supported by CNPq (483125/2010-5 and 560037/
2010-4).
Appendix A. Interview guides

A.1. First data collection interview guide

–General questions
(1) What is your full name?
(2) How long have you worked in this company?
(3) What is your job title in the company?
(4) How long have you held this position?
(5) What are the most important projects you are currently
involved?
(6) What are your activities as <position>?
(7) How many people work with you? What is their work?

–About the project and distributed software development
(8) Do any of the projects you mentioned involve people in
different locations, i.e., distributed development? Which
one (if more than one request that he/she describes an
example)?

a. How many different teams work on this project?
b. Where are the teams located?
c. How is the task division?
d. What part of the project is your team’s responsibility?
e. How is your team’s part related with the other team

parts?
(9) If the interviewee is not currently involved in any
Project with DSD: when was the last time you worked in a
distributed Project?

a. (As an architect?
(10) How was the work divided among the teams?

a. Who did the division?
When?

b. Have these teams worked together before?

–About the interviewee work
(11) What are your specific activities in this project?
(12) Was an architecture defined to be used in this project?
(13) What was the process used to define the architecture in
this project?

a. What was your part in this stage?
b. How many people participate in this task? Who are the

other people? Where are they located?
c. How was the team that defined the architecture

formed? How are the people in this team chosen?
i. Do non-architects participate in this stage?
ii. Members of different teams? Customers? Experts?

Developers? Indications?
iii. Who contacts these people?
iv. What is the role of each member of the architecture
definition team?

(14) When and how was the division of work among
teams defined in this project?

a. Was it you who assigned the division of the modules?
b. Were the modules divided among the teams following

any special criteria? What was it?
c. How was it identified which team was the most

appropriate for developing each module?

(continued on next page)

1250 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
d. Did the work division consider the architecture? How?
e. Did the work division consider the DSD? How?
f. Did the work division consider the company structure?

How?
(15) After the architecture definition, what was the next
step? For example, who:

a. Presents the architecture for the rest of the teams?
b. Negotiates the architecture?
c. Receives feedback from the others involved?
d. Modifies the architecture based on the feedback?

(16) How was/is the schedule in this project made?
Considering the distribution (DSD)? How?

–About the architecture
(17) What factors influence in the architecture/module
definition?
(18) Do you think software architecture is a critical success
factor in a (collocated or distributed) project? Why?
(19) What are the main difficulties related to the
architecture found by the team?
(20) At which development stage were these difficulties
identified?
(21) Does team distribution affect the architecture?

a. If one team is expert in a specific aspect, are all
features related to this activity aggregated in one module?
(22) Can you describe some strategies used to distribute the
components development in this project?

a. Are complex components divided? Or are they
developed completely by one team?

b. Are features aggregated in components according to
teams’ expertise? Or are the components defined and only
then is the distribution defined?
(23) If the interviewee answered yes to question 14e: Can
you give an example of strategy used in the architecture to
deal with development distribution? Something that could
be developed in another way, but in DSD you needed to
think of a different approach?
(24) Is there any strategy that was successful in other
projects and now is often reused in distributed projects?

–About the interaction among teams
(25) How is the dependence among the work of the
different teams?
(26) How are the dependencies managed in the project?

a. Are the interfaces defined?
b. When and how is the module integration performed?
c. If a problem occurs when integrating the modules, how

it is solved? Has this happened before?
(27) How often do you need to interact with people from
other teams in this project (located elsewhere)?
(28) How does this interaction happens?
(29) How often do the teams need to Interact with each
other?
(30) Do you contribute to the interaction among the teams?
How?
(31) How is the development information of one team
passed to the others?

a. Meetings? E-mails? Reports?
(32) If the structure of one team’s component needs to be
changed, how does that affect the other teams? How is this
change communicated to the other teams?

–About the company
(33) What are the target markets of the software developed
by the company?
(34) What are the platforms / programming languages used
by the company?
(35) Generally speaking, at what stage of the software
development cycle does the company usually work on the
software architecture?
(36) Do you think software architecture is a success critical
factor in a distributed project? Why?
(37) What difficulties, related to the software architecture,
can be found by teams that work with DSD in opposition to
collocated teams?
(38) How can these difficulties be minimized?
(39) Do you think the kind of platform/programming
language or product/service developed can influence in the
success of a distributed project? Which ones?

A.2. Second data collection interview guide
–General questions
(1) What is your full name?
(2) How long have you worked in this company?
(3) What is your job title in the company?
(4) How long have you held this position?
(5) What are the most important projects you are currently
involved in?
(6) What are your activities as <position>?
(7) How many people work with you? What is their work?

–About the project and distributed software development
(8) Do any of the projects you mentioned involve people in
different locations, i.e., distributed development? Which
one (if more than one request that he/she describes an
example)?

a. How many different teams work in this project?
b. Where are the teams located?
c. How is the task division?
d. What part of the project is your team responsibility?
e. How is your team’s part related with the other team

parts?
(9) If the interviewee is not currently involved in any
Project with DSD: when was the last time you worked in
distributed Project?

a. As an architect?
(10) How was the work divided among the teams?

a. Who did the division?
b. When?
c. Have these teams worked together before?

–About the interviewee work
(11) What are your specific activities in this project?
(12) What was the ‘‘process’’ used to define the architecture
in this project?

a. What was your part in this stage?
b. How many people participate in this task? Who are

the other people? Where are they located?
c. How was the team that defined the architecture

formed? How are the people in this team chosen?
i. Do non-architects participate in this stage?
ii. Members of different teams? Customers? Experts?

Developers? Indications?
iii. What is the role of each member of the architecture

definition team?
(13) When and how was the division of work among teams
defined in this project?

M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252 1251
a. Did the work division consider the architecture? How?
b. Did the work division consider the DSD? How?
c. Did the work division consider the company structure?

How?

–About the architect work
(14) What do you think an architect needs to know or how
does this person need to act in order to be considered a
good architect?
(15) How many architects usually work in a project in your
company?

a. Do they have different profiles (interests, etc.)? What
are the specificities of these profiles?

b. What are the benefits of this configuration?
c. If answered yes to a), what are the tasks of each type of

architect?
d. If answered yes to a), what is your profile? What is

your work and how it is related to the work of the other
profiles?

e. If answered yes to a), where are the architects located?
i. All in the same location or distributed among the

teams?
ii. Any special reason for this configuration?

(16) How is the interaction among the architects?
a. Do they work together?
b. How do they interact during the architecture

definition?
c. How do they interact with other stakeholders?

(17) How is the participation of the architect in the
communication among the teams of different sites? And in
the communication inside the team(s) of his/her site?
(18) Do you often communicate with other non-developers
stakeholders?

a. How often?
b. What are the reasons?
c. Only from your site or from the others too?
(19) Do other stakeholders (developers, customers,

managers, etc.) come to you to ask questions about the
architecture?

a. How often?
b. Only from your site or from the other too?

c. Are there others who can also answer these
questions? Who are they and what are their roles in the
project?

–About the architecture
(20) How is the architecture represented?

a. Text? Source code? Boxes and arrows? Classes,
packages and diagrams?

b. Different visions?
(21) What is the detail level of the architecture
representation?
(22) How is this architecture representation used?

a. Design?
b. Communication among developers?
c. Change communication?
d. Communication to develop new features?
e. Communication for bug fixing?
f. Implementation feedback?
g. Work and responsibilities distribution?

(23) How is the architecture representation updated?
a. Never? Regularly controlled? Continuously? Related to

the general or releases plan? Only when problems occur?
(24) What factors influence in the architecture/module
definition?
(25) Do you think software architecture is a critical success
factor in a (collocated or distributed) project? Why?
(26) What are the main difficulties related to the
architecture found by the team?
(27) At which development stage were these difficulties
identified?
(28) Does team distribution affect the architecture?

–About the interaction among teams
(29) How is the dependence among the work of the
different teams?
(30) How are the dependencies managed in the project?

a. Are the interfaces defined?
b. When and how is module integration performed?
c. If a problem occurs when integrating the modules, how

it is solved? Has this happened before?
(31) How often do you need to interact with people of other
teams in this project (located elsewhere)?
(32) How does this interaction happen?
(33) How often do the teams need to Interact with each
other?
(34) Do you contribute to the interaction among the teams?
How?
(35) How is the development information of one team
passed to the others?

a. Meetings? E-mails? Reports?
(36) If the structure of one team’s component needs to be
changed, how does it affect the other teams? How is this
change communicated to the other teams?
A.3. Third and fourth data collection interview guide

–General questions
(1) What is your full name?
(2) How long have you worked in this company?
(3) What is your job title in the company?
(4) How long have you held this position?
(5) What are the most important projects you are currently
involved in?
(6) What are your activities as <position>?

–About the architect work and the architecture?
(7) What are your specific activities in this project?
(8) How was the architecture defined?

a. What was your part in this stage?
b. Who defines the architecture?

i. Do non-architects participate in this stage?
ii. Members of different teams? Customers? Experts?

Developers? Indications?
iii. What is the role of each member of the architecture

definition team?
(9) What factors influence in the architecture/modules
definition?
(10) How is the architecture represented?
(11) What do you think an architect needs to know or how
to act to be considered a good architect?
(12) Which roles interact more often with the architect?
(13) How many architects usually work in a project in your
company?

a. Do they have different roles? What are the specificities
of these profiles?

b. What are the benefits of this configuration?
c. If answered yes to a), what are the tasks of each type of

architect?

(continued on next page)

1252 M.C. Figueiredo et al. / Information and Software Technology 56 (2014) 1233–1252
d. If answered yes to a), what is your profile? What is
your work and how it is related to the work of the other
profiles?
(14) How is the interaction among architects and the roles
of question 12?

a. Do they work together?
b. Do they interact during the architecture definition?
c. How do they interact with other stakeholders?

(15) How is the participation of the architect in the
communication among the teams?
(16) Do you often communicate with other non-developers
stakeholders?

a. How often?
b. What are the reasons?

(17) Do other stakeholders (developers, customers,
managers, etc.) come to you to ask questions about the
architecture?

a. How often?
b. Are there others who can also answer these

questions? Who are they and what their role in the project?

–About the transformation process
(18) How is the project development process from the
customer request to the developers?

a. Which artifacts are developed?
b. What is the content of these artifacts?

(19) Explain the transformation theory and ask if something
like that happens in the interviewee’s company.

a. How is the division of activities?
b. Does the architect help in disseminating information?
c. What are the advantages of this configuration?
d. Any more information to add?

–About difficulties/problems/bad practices
(20) What are the main difficulties related to the
architecture found by the team?
(21) Have you ever faced a situation where requirements
were specified and implemented in accordance with the
specification but it was discovered that they were not what
the customer wanted?

a. Why does that happen?
b. How do you solve it? What do you think would help?
c. What do you expect from the analyst in this aspect?
d. Do you know the training the analysts have?

Requirements engineering?
(22) Have you ever faced a situation where you developed a
good architecture, which meets the needs, works, is
elegant, but becomes too difficult or complicated for the
team to develop?

a. What is done when that happens?
b. How do you avoid it?

(23) Bad practices?

References

[1] IASA. <http://www.iasaglobal.org/iasa/default.asp>.
[2] The Open Group. <http://www.opengroup.org/>.
[3] K. Smolander, Four metaphors of architecture in software organizations:

finding out the meaning of architecture in practice, in: Proceedings of the First
International Symposium in Empirical Software Engineering, Nara, Japan, IEEE
Press, 2002.
[4] R.E. Grinter, System architecture: product designing and social engineering, in:
Work Activities Coordination and Collaboration, San Francisco, CA, USA, ACM
Press, 1999.

[5] A. Strauss, J. Corbin, Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory, SAGE publications, Thousand Oaks, CA, 1998.

[6] J. Wilt, IASA’s Five Pillars of IT Architecture. Microsoft tech. ed., 2010. <http://
www.msteched.com/2010/Europe/ARC204> (access 16.11.10).

[7] The Open Group. Business Executive’s Guide to IT Architecture Have You
Thought, 2004. <http://www.opengroup.org/bookstore/catalog/w043.htm>
(access 15.11.10).

[8] The Open Group, Information Technology Architect Certification Program –
Conformance Requirements (Multi-level), England, 2008. <http://
www.opengroup.org/itac> (access 15.11.10).

[9] D. Akenine, A study of architect roles by IASA Sweden, Arch. J. – Role Arch. 15
(2008) 22–25.

[10] J. Hofstader, We don’t need no architects!, Arch J. – Role Arch. J. 15 (2008) 2–6.
[11] A. Unde, Becoming an architect in a system integrator, Arch. J. – Role Arch. 15

(2008) 7–9.
[13] Zachman J. 2008. Zachman Framework. Available in: <http://zachmaninternational.

com/2/Zachman_Framework.asp>. Access in February 26, 2011.
[14] M. Penker, H. Eriksson, Business Modeling with UML: Business Patterns at

Work, John Wiley & Sons, Inc., New York, NY, USA, 2000.
[15] Object Management Group, Object Management Group/Business Process

Management Initiative, 2011. <http://www.bpmn.org/> (access 27.02.11).
[16] J. Zachman, The Zachman Framework: A Primer for Enterprise Engineering and

Manufacturing, 2003. <http://www.zachmaninternational.com> (access 26.02.11).
[17] The Open Group, TOGAF Version 9 – The Open Group Architecture Framework

(TOGAF), 2009. <http://www.opengroup.org/togaf/> (access 20.02.11).
[18] J. Schekkerman, Enterprise Architecture Tool Selection Guide, 2009. <http://

www.enterprise-architecture.info/EA_Tools.htm> (access 20.02.11).
[19] Verbi Software, MAXQDA – The Art of Text Analysis. <http://www.maxqda.

com/> (access 05.01.10).
[22] M. Ali Babar, R. de Boer, T. Dingsøyr, R. Farenhorst, Architectural knowledge

management strategies: approaches in research and industry, in: Workshop
on Sharing and Reusing architectural Knowledge, SHARK’07, 2007.

[23] H. Unphon, Y. Dittrich, Software architecture awareness in long-term software
product evolution, J. Syst. Softw. 83 (2010) (2010) 2211–2226.

[24] D.L. Jorgensen, Participant Observation: A Methodology for Human Studies,
SAGE publications, Thousand Oaks, CA, 1989.

[25] G. Spanoudakis, A. Zisman, Software traceability: a roadmap. handbook of
software engineering and knowledge engineering, in: S.K. Chang (Ed.), Recent
Advancements, vol. III, World Scientific Publishing Co., 2005. ISBN 981-256-
273-7.

[26] P. Carlile, E. Rebentisch, Into the black box: the knowledge transformation
cycle, Manage. Sci. 49 (9) (2003) 1180–1195.

[27] B. Curtis, H. Krasner, N. Iscoe, A field study of the software design process for
large systems, Commun. ACM 31 (11) (1988).

[28] R. Hiranpruk, Introduction to IASA, 2006.
[29] P. Carlile, Transferring translating and transforming: an integrative and

relational approach to sharing and assessing knowledge across boundaries,
Org. Sci. (2003).

[30] M.C. Figueiredo, C.R.B. De Souza, M.Z. Pereira, J. Audy, R. Prikladnicki, On the
role of information technology systems architects, in: 18th Americas
Conference on Information Systems, Seattle, 2012.

[31] C. Seaman, Qualitative methods, in: Guide to Advanced Empirical Software
Engineering, Springer-Verlag, Londres, 2008, pp. 35–62.

[32] J.D. Herbsleb, D. Moitra, Global software development, IEEE Softw. 18 (N2)
(2001) 16–20.

[33] K. Smolander, M. Rossi, S. Purao, Software architectures: blueprint, literature,
language or decision?, Eur J. Inform. Syst. 17 (6) (2008) 575–588.

[34] D. Ameller, C. Ayala, J. Cabot, X. Franch, How do software architects consider
non-functional requirements: an exploratory study, in: 20th IEEE International
Conference on Requirements Engineering (RE), 24–28 Sept. 2012, pp. 41, 50.

[35] H.K. Klein, M.D. Myers, A set of principles for conducting and evaluating
interpretive field studies in information systems, MIS Quart. 23 (1) (1999) 67–
94.

[36] M.Q. Patton, Qualitative Research and Evaluation Methods, Sage Publications,
Newbury Park, CA, 1990.

[37] L.T. Lopes, J.L.N. Audy, A requirements engineering process model for
distributed software development – lessons learned, in: International
Conference on Enterprise Information Systems, 2008, pp. 117–122.

[38] F. Calefato, D. Damian, F. Lanubile, Computer-mediated communication to
support distributed requirements elicitations and negotiations tasks, Emp.
Softw. Eng. 17 (6) (2012) 640–674.

[39] R. Prikladnicki, E. Carmel, Is time-zone proximity an advantage for software
development? The case of the Brazilian IT industry, in: Proceedings of the
International Conference on Software Engineering, ACM/IEEE, San Francisco,
USA, 2013.

http://refhub.elsevier.com/S0950-5849(14)00081-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0120
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0120
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0120
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0135
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0135
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0145
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0145
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0145
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0160
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0160
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0180
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0180
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0180
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0190
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0190
http://refhub.elsevier.com/S0950-5849(14)00081-0/h0190

	Knowledge transfer, translation and transformation in the work of information technology architects
	1 Introduction
	2 IT architecture
	2.1 Architect roles

	3 Settings
	4 Research methods
	4.1 Qualitative research
	4.2 Data collection and analysis
	4.3 The process of analysis
	4.3.1 The first cycle
	4.3.2 The second cycle
	4.3.3 The third cycle
	4.3.4 The final cycle

	5 IT architecture in practice
	5.1 The architecture roles in practice
	5.2 The interdependencies between architect roles and other stakeholders
	5.3 The interdependencies among different architect roles
	5.4 Tool support for architects’ work
	5.5 Summary of key findings

	6 Discussion
	6.1 It architecture and knowledge management
	6.2 It architecture and software architecture

	7 Supporting it architects
	8 Limitations
	9 Conclusions and future work
	Acknowledgments
	Appendix A Interview guides
	A.1 First data collection interview guide
	A.2 Second data collection interview guide
	A.3 Third and fourth data collection interview guide

	References

