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ABSTRACT
Objective We describe experiments designed to
determine the feasibility of distinguishing known from
novel associations based on a clinical dataset comprised
of International Classification of Disease, V.9 (ICD-9)
codes from 1.6 million patients by comparing them to
associations of ICD-9 codes derived from 20.5 million
Medline citations processed using MetaMap.
Associations appearing only in the clinical dataset, but
not in Medline citations, are potentially novel.
Methods Pairwise associations of ICD-9 codes were
independently identified in both the clinical and Medline
datasets, which were then compared to quantify their
degree of overlap. We also performed a manual review
of a subset of the associations to validate how well
MetaMap performed in identifying diagnoses mentioned
in Medline citations that formed the basis of the
Medline associations.
Results The overlap of associations based on ICD-9
codes in the clinical and Medline datasets was low: only
6.6% of the 3.1 million associations found in the clinical
dataset were also present in the Medline dataset.
Further, a manual review of a subset of the associations
that appeared in both datasets revealed that co-
occurring diagnoses from Medline citations do not
always represent clinically meaningful associations.
Discussion Identifying novel associations derived from
large clinical datasets remains challenging. Medline as a
sole data source for existing knowledge may not be
adequate to filter out widely known associations.
Conclusions In this study, novel associations were not
readily identified. Further improvements in accuracy and
relevance for tools such as MetaMap are needed to
realize their expected utility.

INTRODUCTION
The age of ‘Big Data’ has arrived.1–3 Studies using
data collected as part of routine clinical care from
hundreds of thousands, or even millions, of
patients are becoming increasingly common.4–8

Other large datasets (eg, adverse event reports) are
also being linked to these clinical data to accelerate
discovery,9 10 leading to new findings of intriguing
and potentially clinically relevant associations that
could aid in the understanding of disease pro-
cesses.10 11 For example, Tatonetti et al12 recently
discovered an association between elevated blood
glucose levels and the co-administration of paroxe-
tine and pravastatin, neither of which raised blood
glucose when given alone.
Association analysis methods have been widely

used to aid in knowledge discovery, where

associations are usually determined by finding pair-
wise relationships among entities that co-occur at a
statistically significant rate compared to the overall
population. We previously reported on two separate
association analyses, one utilizing 1.5 million free
text problem list entries from over 300 000
patients5 and the other using 41.2 million
International Classification of Disease, V.9 (ICD-9)
codes from over 1.6 million patients.4 The latter
dataset represented virtually all possible diagnosis-
based clinical associations known to our health
system, a large tertiary academic medical center
with over 1.8 million outpatient and emergency
visits and 44 000 hospital stays annually, derived
from over a decade of patient encounters.
In both studies,4 5 we noted that a very large

number of statistically significant associations
resulted from the analyses, making it impossible to
identify all novel ones via manual review alone. We
also noted that many of the associations, especially
the most statistically significant ones, are already
widely known. For example, in the study using free
text diagnoses, the well-known associations we
found included one between obesity and hyperten-
sion and one between Turner syndrome and ovarian
failure. Lesser known associations that we confirmed
with a manual literature review included hypothy-
roidism and fibromyalgia as well as gout and cardio-
myopathy.5 An example of a well-known association
from the second study using ICD-9 codes included
end stage renal disease and kidney transplant,
whereas an unusual association with no supporting
evidence in the literature was between depression
and animal bites (primarily cats).4 This latter associ-
ation was confirmed with a manual chart review.11

However, manually validating the potential novelty
of all associations against the literature, from such
large-scale analyses, is not feasible. Developing auto-
mated approaches that can effectively distinguish
known from unknown clinical associations is thus
imperative. Such automated methods could be bene-
ficial for a variety of applications, including surveil-
lance of electronic health record data to detect
previously unknown or newly arising patterns.
A potential approach to automating the identifi-

cation of novel associations is through comparing
those found in clinical datasets against comprehen-
sive repositories of known associations. The
National Library of Medicine’s (NLM) Medline/
PubMed database is the world’s largest indexed
repository of biomedical literature, with over 19
million citations from over 5500 journals.13 It
might therefore be possible to use Medline as a
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basis from which such a knowledge repository of associations
could be assembled and then compared to associations derived
from large clinical datasets. Such literature-based discovery tech-
niques, also known as literature mining, are not new.14–18

However, prior studies have often focused on specific clinical
areas, such as psychiatry19 20 or diabetes.21 22 It is unclear how
well such an approach might work with an ‘all versus all’ com-
parison—that is, all patient data from a large health system
versus all abstracts in Medline.

Recently, the NLM computationally processed the entire
Medline database using their natural language processing (NLP)
based named entity recognition software tool, MetaMap.23

MetaMap identifies clinical concepts (eg, ‘type 2 diabetes’) from
unstructured biomedical text and then maps them to concept
unique identifiers (CUIs) in the Unified Medical Language
System (UMLS) Metathesaurus; for example, C0865162 is a
CUI for ‘diabetes’. These CUIs can, in turn, be mapped to
various taxonomies, vocabularies, and ontologies including
ICD-9; for example, the CUI above, C0865162, maps to the
ICD-9 code ‘250.0’. MetaMap has been used for a variety of
tasks including extracting information from drug labels,24

coding death certificates,25 conducting biosurveillance,26 parsing
documents from electronic health records,27 28 supporting
Medical Subject Heading (MeSH) assignments through use of
the NLM Medical Text Indexer (MTI),29–32 improving informa-
tion retrieval from Medline,33 and even assigning ICD-9 codes
from clinical text.34–36

We hypothesized that clinical associations derived from
administrative ICD-9 codes assigned during patient encounters
can be compared against associations extracted from the litera-
ture to distill novel associations from known ones. That is, if an
association resulting from a clinical dataset is not found in
Medline, then it may be potentially novel and warrant further
investigation. We also hypothesized that among a collection of
associations derived from the same large dataset, clinical associa-
tions ranked higher (ie, with smaller p values or larger χ2 statis-
tics) would be more likely to be identified in the literature than
lower ranked ones, based on the assumption that common pro-
blems are more likely to have been studied and published. In
this study, we developed and empirically validated a set of com-
putational analyses to assess the feasibility of verifying novel
associations identified through mining clinical data against the
results from mining the literature. Our primary goal in this
method development paper is to explore the feasibility of this
approach rather than making new clinical discoveries.

METHODS
A high-level overview of the analytic approach used in this
paper is illustrated in figure 1. Below, we describe the data
sources and each of the analytic steps in-depth.

Description of datasets
Two datasets were used in the analysis. The clinical associations
(referred to as ‘Clinical’) were obtained from the dataset pro-
cessed for a prior study.4 These associations encompass ICD-9
administrative data from both inpatient and outpatient encoun-
ters for 1.6 million patients at our health system, and spanned
more than a decade. A description of how the clinical associa-
tions were computed can be found in the ‘Association analyses’
subsection, below.

The second dataset (referred to as ‘Medline’) was provided by
the NLM and included all citations in Medline/PubMed as of
November 18, 2011. The NLM has named this the ‘2012
MetaMapped Medline Baseline Results’.37 The dataset contains

a total of 20.5 million citations processed by the NLM using
MetaMap. It is comprised of 3.3 billion lines of text in the
MetaMap Machine Output (MMO) Format, taking over 1.5
terabytes disk space.38 39

Extraction of CUIs
During the named entity extraction process, MetaMap generates
a normalized score estimating the degree of match between a
candidate term and the Metathesaurus based on four compo-
nents: centrality, variation, coverage, and cohesiveness.23 40

From the Medline dataset, we parsed all CUIs with a ‘perfect’
MetaMap score of 1000, noting the specific PubMed Identifier
(PMID) of the paper(s) from which each of the CUIs was from
and whether a CUI was identified in the title or in the abstract
of the paper(s). This is referred to as the ‘Medline 1000’
dataset.

Using CUIs with only a perfect score will exclude alternative
ways to express a given concept because it essentially requires
an exact match and does not allow for synonomy or slight word
variations. Therefore, because it was unclear how much infor-
mation might be lost by including only perfect mapping scores,
we also created another dataset consisting of extracted CUIs
where candidate concepts had mapping scores of 600 or higher.
This allowed us to broaden the scope of our search to ensure a
larger capture rate for concepts, since a CUI mapped to an
ICD-9 code might otherwise be ‘hidden’ by a higher scoring
CUI from a different vocabulary. We refer to the second dataset
as ‘Medline 600’. This threshold was chosen because it was
lower, and thus more inclusive, than thresholds commonly used
in prior studies (see Discussion).

CUI to ICD-9 mapping
From the UMLS Metathesaurus (V.2013AA), we extracted two
vocabularies, namely ‘ICD9CM’ and ‘MTHICD9’, in order to
map Metathesaurus CUIs to ICD-9 entries. ICD9CM is the clin-
ical modification of the International Classification of Diseases
developed by the US Department of Health and Human
Services. MTHICD9 provides additional synonyms for
ICD9CM terms and was developed for the Metathesaurus by
the NLM. Both vocabularies were extracted from the
MRCONSO.RRF file that contains concepts, concept names,
and their sources (MR: metathesaurus relational; CON:
concept; SO: source; RRF: rich release format). For CUIs
mapped to more than one ICD-9 code, we included only those
that mapped to 50 or fewer distinct ICD-9 codes. This was
done because some CUIs mapped to so many different codes
that they were considered too non-specific for our analysis. The
resulting mapping set contains 36 988 distinct mappings repre-
senting 33 999 and 22 198 unique CUIs and ICD-9 codes,
respectively. We then processed the CUIs from the
MetaMap-prepared Medline citations, retaining only those CUIs
that mapped to at least one ICD-9 code.

Association analyses
Leveraging all ICD-9 codes mapped from clinical concepts in
Medline citations, we then conducted a large-scale association
analysis based on the methodology we had previously developed
for discovering clinical associations from patient care data.4 In
short, we determined the probability and statistical significance
of two codes co-occurring in the same patient profile or
Medline citation using the χ2 test. This was done by construct-
ing 2×2 tables for every pair of concepts. For example, in the
Medline dataset we determined the χ2 statistic based on the fol-
lowing conditions: (1) citations that mentioned both diagnosis A
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and diagnosis B; (2) citations that mentioned diagnosis A but
not diagnosis B; (3) citations that mentioned diagnosis B but not
diagnosis A; and (4) citations that mentioned neither diagnosis
A nor B. While there are a number of ways to quantify the rela-
tionship between two binary variables, the χ2 test is most popu-
larly used. We used the χ2 statistic to rank order the associations
within each dataset to provide a basis for inferring the ‘relative
strength’ among the associations in the dataset. Note that tem-
poral aspects were not considered in the experiments reported
in this paper.

For the Clinical dataset, in accordance with our prior analysis,
only codes that appeared at least 30 times and where at least 10
patients shared the same pair of two codes were considered to
be potentially associated. For codes under these thresholds a χ2

test was not performed. By contrast, the association analysis for
the Medline dataset considered any pair of codes that appeared
together in at least one citation. This was because some citations
could represent meta-studies (eg, systematic reviews) as well as
studies based on data collected from tens or thousands of
patients.41 These datasets (both ‘Medline’ and ‘Clinical’) that
included all ICD-9 codes in their original format are referred to
as ‘Original’.

Additionally, because coding variations may occur among
both clinicians and professional coders,42–45 and because these
variations could affect the nature of associations discovered, we
also conducted an additional association analysis by collapsing
the hierarchical structure of the ICD-9 taxonomy so that all
‘subcategory codes’ were merged into their parent ‘category
code’. For example, codes such as ‘250.0’, ‘250.23’, and
‘250.80’ were converted to simply ‘250’, a high-level code used
to designate the entire family of diabetes. These collapsed data-
sets (both ‘Medline’ and ‘Clinical’) are referred to in this paper
as ‘Simplified’.

High-level dataset comparisons
The primary objective of this study was to determine whether
associations identified in the literature could be used to filter out
known associations identified from patient care data, thus
revealing potentially novel clinical associations. Therefore, we
compared the Medline and Clinical datasets to determine how
much overlap existed in terms of the ICD-9 codes used and the
clinical associations discovered in each. This overlap was quanti-
fied and visualized using Venn diagrams (figures 2 and 3).46

We then modeled the probability of an association being in
the literature as a function of its ranking in the clinical dataset.
Associations in the clinical dataset were ranked according to
their χ2 statistic, and each association was assigned a percentile
rank ranging from 1st (highest) to 100th (lowest). For all of the
clinical associations assigned to the same percentile, we deter-
mined which ones had corresponding associations in the
Medline dataset. These results were visualized using bar plots
(figure 4). We also modeled the converse—that is, the probabil-
ity of an association being in the Clinical dataset as a function
of its χ2 ranking in the Medline dataset.

Association-specific comparisons
We also looked at individual associations derived from our clin-
ical dataset to better estimate the utility and reliability of using
the literature as a screening tool to validate novelty. We exam-
ined this through two steps. First, to determine the reliability of
the associations found in both the Clinical and Medline data-
sets, we randomly selected Clinical associations at several spe-
cific levels of significance (eg, 50th percentile, 75th percentile)
for which there were corresponding Medline associations.
ICD-9 ‘V’ codes were not considered in this part of the analysis
because they are often less directly related to specific diagnoses.
Two practicing, informatics-trained physicians (DAH and MS),
with 14 and 6 years of postgraduate experience, respectively,
independently reviewed the titles and abstracts from which the
literature-based associations were derived. Each citation was
judged to either support the association identified from the clin-
ical dataset or not to support it. Additionally, associations were
judged to be clinically ‘surprising’ if there was no clear explan-
ation for why the two diagnoses might be related. Agreements
in the two reviewers’ judgments were quantified using the κ
statistic.

We then randomly sampled clinical associations for which
there were no corresponding associations found in the Medline
dataset to determine if they might represent novel associations,
and to compare the performance of MetaMap against manual
strategies inspecting for novelty. The same two physicians
reviewed these associations to determine if they were clinically
surprising. They also conducted a manual literature search in
Medline in an attempt to find out whether, for each of the asso-
ciations, at least one citation could be found that provides evi-
dence confirming its validity.

Figure 1 A high-level overview of the analytic approach, including the data sources and processes.
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Additional analyses
We performed several additional analyses and report the results
in online appendices A, B, and C. Online supplementary appen-
dix A provides several groups of scatter plots exhibiting the rela-
tionship between the frequency of an ICD-9 code appearing in
each of the datasets analyzed, and the corresponding number of
associations to which it belonged. In online supplementary
appendix B, we explored the distribution of association rankings
as a function of an ICD-9 code’s frequency in the original clin-
ical dataset. We selected 15 ICD-9 codes that appeared with
varying frequencies in the clinical dataset for this experiment.
Finally, in online supplementary appendix C, we explored the
potential for using the UMLS relationships as defined in the
UMLS relational table MRREL.RRF as another source of asso-
ciations that could be used to help filter known from unknown
associations. Additional methodological details can be found in
each of the online supplementary appendices. Note that in this
study, we did not explore the use of Semantic MEDLINE47 48

because the relationships contained in Semantic MEDLINE are
directly derived from MetaMap-processed Medline citations,
where are therefore not expected to generate substantially dif-
ferent results from our primary analysis.

All statistical analyses reported in this paper were conducted
using R V.2.15.3. Venn diagrams were created using the
VennDiagram Package for R.46 While we used the χ2 statistic to
rank the associations, the corresponding p values are also
reported to aid in interpretation. For computation of the data-
sets, we used a 2010 Apple Mac Mini equipped with a

2.66 GHz Core 2 Duo processor and 8 GB RAM, and for
storage we used an external 4 TB hard drive connected via USB
2.0.

RESULTS
Characteristics of the datasets
Processing the large dataset of all Medline citations yielded
333.3 million non-distinct CUIs with a perfect score of 1000.
About 28.5 million of these CUIs (8.5%) were identified in the
titles, with the remaining 304.9 million (91.5%) identified in
the abstracts. There were approximately 16.3 million unique
citations represented in this dataset. However, only a subset of
the CUIs, approximately 23.1 million CUIs representing 5.1
million unique citations, mapped to at least one of 7599 distinct
ICD-9 codes. Additional characteristics of the dataset are shown
in table 1.

The ‘Medline 600’ dataset used less stringent criteria for
selecting CUIs for inclusion, and thus 3.5 billion non-distinct
CUIs were identified, with 348.2 million (9.8%) in the titles and
3.2 billion (90.2%) in the abstracts. This dataset contained 20.4
million unique citations, representing all but 0.4% of the cita-
tions included in the original dataset. Only CUIs that mapped to
an ICD-9 code were retained, resulting in 148.0 million CUIs,
10.0 million citations, and 9416 unique ICD-9 codes. Table 1
also summarizes the characteristics of this dataset.

Only one ICD-9 code (401.9, ‘unspecified essential hyperten-
sion’) appeared in the top 30 most frequently appearing codes
in the Original Clinical dataset as well as the top 30 of the

Figure 2 Venn diagrams showing overlap of International Classification of Disease, V.9 (ICD-9) codes found in the Clinical and Medline datasets.
Panels A and C represent the original codes, whereas Panels B and D represent the simplified codes. Codes that do not overlap between the two
datasets have no chance of becoming a pairwise association found in both sets.
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Original Medline datasets. By reducing the coding variation in
the Simplified datasets, six of the top 30 codes in the Clinical
dataset can also be found in the top 30 of at least one of the
corresponding Medline datasets (table 2). For the Clinical data-
sets, this list represents the most common diseases (diagnoses)
treated by our health system. For the Medline datasets, it shows
the most common diagnoses discussed in the literature, based
on MetaMap.

Figure 2 shows the overlap of the ICD-9 codes that were
included in the datasets being compared. Slightly more than a
third (37.1%) of the ICD-9 codes from the Original Clinical
dataset were found at least once in the Original Medline 1000
dataset, and only 44.4% were found in the more inclusive
Original Medline 600 dataset. When the datasets were simpli-
fied by merging subcategory codes, more overlap was evident:
four-fifths (79.4%) of the codes in the Simplified Clinical
dataset were in the Simplified Medline 1000 dataset, and 84.3%
were in the Simplified Medline 600 dataset.

Clinical associations also found in Medline
We hypothesized that many of the associations discovered in the
Clinical dataset would have been reported in Medline, achieving
a more manageable number of potentially novel associations to
be explored further for clinical significance. However, this was
not the case according to the results of our analyses. As shown
in the Venn diagrams illustrating the overlap between the
Medline and Clinical datasets (figure 3), in the original datasets,
only 6.6% of the Clinical associations had a correlate in the

Medline 1000 dataset, with slightly more (10.7%) found in the
Medline 600 dataset. The simplified datasets, where the ICD
codes of the same family were merged into parent categories,
displayed higher coverage, with 31.2% of the Clinical associa-
tions also present in the Medline 1000 data, and almost half
(44.5%) of the Clinical associations also found in Medline 600.

We anticipated that higher ranked Clinical associations (based
on larger χ2 statistics or, conversely, smaller p values) would be
more likely to be found in Medline, and this was evident in the
bar plots shown in figure 4, where A/C and B/D show the trends
for the Clinical datasets, Original versus Simplified, respectively.
In figure 4, it can clearly be observed that higher ranked associa-
tions in the Clinical set in general were more likely to be found
in the Medline dataset. However, our results did not suggest as
strong a correlation for the converse. That is, the relationship
between the rank of an association found in Medline and the
likelihood of finding that association in the Clinical dataset was
not as strong (figure 5).

Specific associations
Table 3 shows associations identified from both the Clinical and
Medline 1000 datasets at varying levels of significance. As
shown in the table, the lower-ranked associations tended to be
more clinically ‘surprising’. However, our manual review of the
citations showed that many of the titles/abstracts mentioning
two diagnoses together did not truly suggest an actual associ-
ation between the diagnoses. That is, the mere mention of two
diagnoses in the same citation is not a reliable indicator of a

Figure 3 Venn diagrams showing overlap of pairwise associations found in the Clinical and Medline datasets. Panels A and C display the Original
datasets, where as Panels B and D represent the Simplified datasets. The left most area in each panel is the one most likely to contain novel
associations not previous described in the literature as they are found in the Clinical dataset but not the Medline dataset.
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clinically meaningful association. Table 4 displays associations in
the Clinical dataset that were not present in Medline 1000.
Again, clinically surprising associations tended to be less signifi-
cant (lower-ranked), and they were also less commonly found in
Medline even with a manual search.

Additional results
The experiments reported in online supplementary appendices
A–C revealed several additional insights. First, ICD-9 codes that
occur more frequently in the Clinical dataset tend to belong to
more associations than those codes that occur rarely (see online
supplementary appendix A). Second, for many of the ICD-9
codes, the distribution of association rankings to which each

code belongs demonstrated greater spread in the Clinical dataset
compared to the Medline dataset (see online supplementary
appendix B). Finally, relationships defined within the UMLS
relational table can be an additional resource for known associa-
tions that are not found within Medline (see online supplemen-
tary appendix C). However, the Clinical dataset still contained
many associations not included in the UMLS relational table.

DISCUSSION
The results of the experiments reported in this paper show that
while combining literature mining and clinical data mining
could aid in the discovery of novel associations, the overlap
between the Clinical and Medline datasets was surprisingly low.

Figure 4 Bar plots showing the
relationship between the rank of an
association in the Clinical dataset and
the probability of the association
appearing in the Medline dataset. (A)
Clinical (original) appearing in Medline
1000 (original); (B) Clinical (simplified)
appearing in Medline 1000
(simplified); (C) Clinical (original)
appearing in Medline 600 (original);
(D) Clinical (simplified) appearing in
Medline 600 (simplified). The p-values
shown represent the significance of the
Clinical associations at that percentile.

Table 1 Characteristics of the datasets used in the analysis

Original datasets Simplified datasets

Clinical Medline 1000 Medline 600 Clinical Medline 1000 Medline 600

Rows of data 41 192 825 23 051 034 147 994 791 41 192 825 23 051 034 147 994 791
Patients (clinical data)/citations (Medline data) in full dataset 1 620 280 5 069 886 9 975 979 1 620 280 5 069 886 9 975 979
Patients/citations included in final pairwise comparisons dataset 1 619 785 5 069 347 9 975 705 1 620 271 5 069 851 9 975 966
Distinct ICD-9 codes 14 499 7599 9416 1195 1073 1133

Possible pairwise comparisons* 105 103 251 28 868 601 44 325 820 713 415 575 128 641 278
Actual pairwise comparisons† 3 066 673 1 318 933 2 718 577 315 681 165 391 257 558
Unique ICD-9 codes meeting criteria to be used in a pairwise comparison‡ 8601 7309 9233 1099 1057 1126

*Possible pairwise comparisons is determined by (n2−n)/2, where n is the number of distinct ICD-9 codes in the dataset.
†A pairwise comparison was only calculated under the following conditions: (1) for the clinical data if (a) each code was assigned to at least 30 patients and (b) the pair of codes were
present together in at least 10 patients; (2) for the Medline data if (a) each code was assigned to at least 1 citation and (b) the pair of codes was present together in at least 1 citation.
‡The actual number of distinct ICD-9 codes that were used in the pairwise comparisons in each dataset. Not all possible codes contributed to a pairwise comparison.
ICD-9, International Classification of Disease, V.9
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Considering that many of the concurrent mentions of diagnoses
in the same abstract were likely due to chance rather than as a
result of true associations, we would have expected these false
positives to have increased the amount of overlap. We did find a
general trend that higher ranked clinical associations were more
likely to also be found in Medline citations (figure 4), but this
was not as pronounced as we had expected it to be. Even
among the highest ranked clinical associations, and using the
more inclusive Medline 600 data, only 27% of the clinical asso-
ciations were also found in the Medline dataset (figure 4C).
Some of this difference may be attributable to the fact that our
dataset included historical, deprecated codes that are no longer
identified or mapped by current systems such as MetaMap. An
example from our previous work was code V72.3 (gyneco-
logical examination) which was no longer used after 2005, and
was replaced by the more granular codes V72.31 and V72.32.4

Our clinical dataset had 87 420 patients with the older code
V72.3, and V72.3 was present in 6005 associations. By contrast,
there were 55 212 patients with the newer code V72.31 that
was present in 5105 associations.

It is possible that many of the associations found in the
patient care data are not clinically meaningful, or are related to
one another due to confounding factors such as age or gender.
And, many widely and historically known associations might
not have been discussed in the literature indexed in Medline
(the earliest citation in Medline is from 1809). There may also
be an inherent bias in Medline because not every clinical associ-
ation is necessarily an interesting research topic worth publish-
ing, and the research literature does not necessarily discuss
clinical conditions proportionally to their prevalence in the
population. Other online resources such as Wikipedia might
also provide relevant, supplemental clinical coverage not

Table 2 The 30 most common codes for the Simplified versions of the three datasets

Simplified Clinical dataset Simplified Medline 1000 dataset Simplified Medline 600 dataset

Code Description Freq. Code Description Freq. Code Description Freq.

786 Symptoms involving respiratory
syststem/chest

323,562 780 General symptom 279,960 89 Interview, evaluation, consultation, and
examination

684,766

780 General symptom 286,381 89 Interview, evaluation, consultation, and
examination

168,522 780 General symptom 669,453

789 Symptoms involving abdomen, pelvis 228,190 239 Neoplasms of unspecified nature 164,581 239 Neoplasms of unspecified nature 491,658
719 Joint disorders 226,585 88 Other diagnostic radiology and related

techniques
164,304 99 Other nonoperative procedures 452,538

427 Cardiac dysrhythmias 206,499 99 Other nonoperative procedures 151,387 88 Other diagnostic radiology and related
techniques

425,485

V72 Special investigations and exams 195,803 199 Malignant neoplasm 134,119 199 Malignant neoplasm 370,794
518 Diseases, lung, other 183,058 250 Diabetes mellitus 116,196 279 Disorders of the immune mechanism 316,417
465 Acute infections of upper respiratory

tract
171,964 401 Essential hypertension 101,952 E904 Accident due to hunger/thirst/exposure 311,337

V70 General medical examination 171,947 997 Complication affecting body
95,460

759 Congenital anomalies 254,442

724 Back disorders 152,960 402 Hypertensive heart disease 93,712 39 Operations on vessels 215,326
729 Disorders, soft tissues 151,388 405 Secondary hypertension 93,431 87 Diagnostic radiology 203,444
V04 Need for prophylactic vaccination 149,835 403 Hypertensive chronic kidney disease 93,270 042 HIV disease 193,453

V07 Need for prophylactic measures 148,123 404 Hypertensive heart and chronic kidney
disease

93,148 250 Diabetes mellitus 187,375

787 Symptoms involving digestive system 141,223 338 Pain 80,803 695 Erythematous conditions 176,305
959 Injury, not otherwise specified 139,420 042 HIV disease 78,847 782 Symptoms involving skin, other tissue 172,965
V67 Follow-up examination 139,155 278 Overweight, obesity and other

hyperalimentation
70,312 338 Pain 172,190

782 Symptoms involving skin, other tissue 138,882 429 Ill-defined heart disease 69,354 997 Complication affecting body 168,875
V06 Need for combination vaccination 135,206 427 Cardiac dysrhythmias 68,396 401 Essential hypertension 168,857
401 Essential hypertension 133,645 410 Acute myocardial infarction 67,988 799 Morbidity/mortality, ill-defined 162,701
784 Symptoms involving head and neck 129,325 E904 Accident due to hunger/thirst/exposure 67,891 92 Nuclear medicine 159,785
V76 Screening for malignant neoplasms 118,977 311 Depressive disorder 66,878 429 Ill-defined heart disease 158,653
V20 Health supervision of infant/child 114,588 787 Symptoms involving digestive system 66,615 402 Hypertensive heart disease 157,874
785 Symptoms involving cardiovascular

system
113,977 414 Chronic ischemic heart disease 65,600 405 Secondary hypertension 157,495

733 Bone and cartilage disorders 112,034 782 Symptoms involving skin, other tissue 62,834 403 Hypertensive chronic kidney disease 157,374
599 Urethra/urinary tract disorders 102,919 39 Actinomycotic infections 61,703 404 Hypertensive heart and chronic kidney

disease
156,992

367 Refraction/accommodation disorder 102,395 995 Adverse effects 59,973 368 Visual disturbances 155,964
709 Disorders of skin & sbcutn tissue 101,979 786 Symptoms involving respiratory system/

chest
58,738 995 Adverse effects 155,379

V05 Need for prophylactic vaccination 98,882 300 Anxiety, dissociative and somatoform
disorders

58,397 427 Cardiac dysrhythmias 149,674

530 Esophagus diseases 98,170 759 Congenital anomalies 56,048 268 Vitamin D deficiency 142,584

382 Suppurative otitis media 95,640 277 Unspecified metabolism disorder 55,589 269 Other nutritional deficiencies 142,075

Codes that appear in the top 30 of the Clinical dataset and in the top 30 of least one of the Medline datasets are highlighted to show the concordance.
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otherwise included in Medline. Further, our study only utilized
titles and abstracts of Medline citations, leaving out the majority
of details present in the main body of each publication.

We did find a trend that the lower-ranked associations tended
to be more clinically surprising, with reasonable inter-rater
agreement between the two human reviewers (tables 3 and 4).
However, the low inter-rater agreement on whether or not cita-
tions were in support of the associations (table 3) demonstrates
that identifying supporting scientific evidence is a challenge
even among trained clinicians. Further, the fact that the
reviewers were able to locate citations in support of 15 out of
the 25 associations that were not identified in our Medline data
(table 4) suggests that many relationships may be described in
the literature in a manner that is not readily interpretable by
computational tools such as MetaMap. While consolidating
ICD-9 codes of the same disease category resulted in improved
coverage, it might come with a price of potentially losing clin-
ical meaning, especially when concepts that were combined
should truly remain distinct. In the future, it may be beneficial
to group codes according to their clinical relatedness, rather
than hierarchically, as has been done for disorders such as
stroke49 50 or depression.11

Of course, there may be clinically valid associations that
simply have not yet been reported in the literature, as we had
discussed in our prior work.11 As an example, table 4 exhibits a
clinical association between vitamin D deficiency and non-
specific swellings or lumps. The citations we manually reviewed
did not seem to directly support this association, but two of the
citations did describe a potential relationship between lumps/
nodules and malnutrition/malnourishment,51 52 the latter of
which could result in a vitamin D deficiency.53

It is also worth comparing our current study to other similar
work. Holmes et al, for example, used MedLEE, another

medical NLP tool,54 to extract concepts and map them to
ICD-9 codes from Medline abstracts, Wikipedia articles, and
discharge summaries for several rare diseases.55 The study also
used administrative data consisting of ICD-9 billing codes. This
approach was able to identify associations found in the clinical
data not found in the published literature, and vice versa. The
authors also noted that ICD-9 is limited in its coverage of con-
cepts, which likely limited their ability to detect additional asso-
ciations, just as its use was likely a limiting factor of our study.

The literature-based discovery approach has also been used to
identify other clinical relationships. For example, Vos et al20

used the lack of citations in Medline as a source of information
to identify novel associations between psychiatric and somatic
disorders. Experts reviewed candidates to determine which had
clear explanations for their relatedness, or could not be readily
explained (thus suggesting truly novel relationships). Another
similar study extracted concepts from free text patient records
and mapped them to ICD-10 codes in order to discover disease
associations.19 The findings were then linked to the Online
Mendelian Inheritance in Man (OMIM) resource which
describes genetic disorders and their phenotypes.56 An experi-
enced clinician manually reviewed the top candidates to identify
‘interesting’ associations that were not previously known. In our
study we only used ICD-9 codes from administrative data, but
future work could include codes derived from clinical docu-
ments using NLP tools, as some other studies have done.

MeSH concepts from Medline have also been used to aid in
the discovery of associations between clinical concepts.57 For
example, Avillach et al58 used MeSH concepts to confirm asso-
ciations with adverse drug events, defined as ‘drug safety
signals’. In the study, a threshold of an association being men-
tioned in three or more citations was used, whereas in our study
we included even a single citation mentioning both diagnoses.

Figure 5 Bar plots showing the
relationship between the rank of an
association in the Medline dataset and
the probability of the association
appearing in the Clinic dataset. (A)
Medline 1000 (original) appearing in
Clinical (original); (B) Medline 1000
(simplified) appearing in Clinical
(simplified); (C) Medline 600 (original)
appearing in Clinical (original); (D)
Medline 600 (simplified) appearing in
Clinical (simplified). The p-values
shown represent the significance of the
Medline associations at that percentile.
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Table 3 Clinical associations also found in the ‘Original’ Medline 1000 dataset

ICD-9
code Description

ICD-9
code Description

Association
p value
derived from
Clinical dataset

Clinically
surprising?

Number of Medline
citations with both
concepts mentioned

Supporting
citations
(PMID)†

Citation could be
interpreted as
describing an
association?

1st percentile (highest ranked associations)

290.0 Senile dementia 331.0 Alzheimer’s disease <5×10−324 No 1139 11138345
2614500
7056516

No
Yes
No

344.61 Cauda equina syndrome with
neurogenic bladder

596.54 Neurogenic bladder <5×10−324 No 11 11880062
16813905
3400548

*
No
No

184.4 Malignant neoplasm of vulva 233.3 Carcinoma in situ, unspecified
female genital organs

<5×10−324 No 1 2082867 *

396.2 Mitral valve insufficiency and aortic
valve stenosis

424.1 Aortic valve disorders <5×10−324 No 2 11163732
9665226

Yes
Yes

362.21 Retrolental fibroplasia 769 Respiratory distress syndrome
in newborn

<5×10−324 No 92 12709796
19568962
15716610

*
*
*

25th percentile

268.9 Unspecified vitamin D deficiency
(268.9)

782.2 Localized superficial swelling,
mass, or lump

3.8×10−68 Yes 3 11233710
21806909
9339283

No
No
No

558.1 Gastroenteritis and colitis due to
radiation

789.0 Abdominal pain 7.1×10−68 No 1 8140765 Yes

279.5 Graft-versus-host disease E888.9 Accidental fall 2.4×10−67 Yes‡ 1 9250172 No

131.9 Trichomoniasis 590.80 Pyelonephritis 3.0×10−67 * 1 9286064 *

078.19 Viral warts 622.11 Mild dysplasia of cervix 8.4×10−67 No 1 7559948 Yes

50th percentile

276.52 Hypovolemia 403.9 Hypertensive renal disease 9.8×10−23 No 73 11602456
17113396
365408

Yes
Yes
No

255.41 Glucocorticoid deficiency 788.3 Functional urinary incontinence 4.8×10−22 Yes 1 9836036 Yes

413.9 Angina pectoris 596.51 Hypertonicity of bladder 7.0×10−22 Yes 1 17689623 No

286.9 Coagulation defect 344.00 Quadriplegia 8.0×10−22 * 4 11403538
16958632
3508705

No
Yes
No

229.9 Benign neoplasm of unspecified
site

354.0 Carpal tunnel syndrome 4.9×10−21 Yes 1 1672719 *

75th percentile

416.9 Chronic pulmonary heart disease 783.41 Failure to thrive 4.6×10−6 No 24 12597677
8165079
2657582

Yes
Yes
Yes

351.0 Bell’s palsy 742.59 Congenital anomalies of spinal
cord

4.7×10−6 No 1 18756840 No

302.72 Psychosexual dysfunction with
inhibited sexual excitement

576.2 Obstruction of bile duct 4.6×10−6 Yes 1 16402030 No

259.9 Endocrine disorder 368.00 Amblyopia 4.6×10−6 Yes 1 15105955 Yes

611.72 Lump or mass in breast 759.6 Hamartoses 4.7×10−6 No 1 19737912 *

100th percentile (lowest ranked associations)

571.2 Alcoholic cirrhosis of liver 617.9 Endometriosis 0.99 Yes 1 8834254 *

153.9 Malignant neoplasm of colon 487.1 Influenza with other respiratory
manifestations

0.99 Yes 3 12889684
18544745
20813181

No
No
No

454.0 Varicose veins of lower extremities
with ulcer

691.8 Other atopic dermatitis and
related conditions

0.98 Yes 1 3442079 No

585.6 End stage renal disease 626.0 Absence of menstruation 0.99 No 23 3130865
16619340
9593608

Yes
*
Yes

110.5 Dermatophytosis of the body 135 Sarcoidosis 0.99 Yes 1 11476274 No

These were selected from the area of overlap in figure 3A. The lower-ranked associations tend to be more clinically surprising. Many of the citations found in the literature did not
actually suggest a true association after manual review. Whether an association was clinically surprising was independently determined by two physicians (κ statistic 0.84; 95% CI 0.63
to 1.05). The κ statistic for agreement on whether the citations found by our approach supported the association was 0.55 (95% CI 0.30 to 0.79).
*Opinions for which the physicians differed.
†For associations with more than three citations, three were randomly selected for this analysis.
‡The abstract stated, ‘donor stem cells become tolerant to host antigens and fall to cause GVHD’. The word ‘fall’ was coded into the ICD-9 code for a fall. Not only was this the wrong
context for a fall, but the word ‘fall’ in this abstract is actually a typographic error and should have been ‘fail’.
ICD-9, International Classification of Disease, V.9; GVHD, graft-versus-host disease; PMID, PubMed Identifier.

Hanauer DA, et al. J Am Med Inform Assoc 2014;21:925–937. doi:10.1136/amiajnl-2014-002767 933

Research and applications



Other approaches could also be used to improve the perform-
ance of similar data mining methods, some of which could be
applied when the original data are collected. For example, if
authors were given the option to manually annotate Medline
citations with additional coded data (eg, diagnoses, procedures,
drugs), the need for complex post-hoc NLP could be dimin-
ished. Additionally, development of a curated knowledge base of
known associations could be useful in a variety of contexts.
Ontologies could also be leveraged to find associations that may

not be explicitly defined but may be discoverable through the
ontological relationships. There are a multitude of association
measures,59 and selecting the right measure to capture a subject-
ive notion of ‘interestingness’ is a research topic of future inves-
tigation. Association measures differ in what they are aiming to
capture but many of them use the same quantities, for example,
marginals, conditionals, and sizes of intersections.

It is possible that the validity of our study findings is contin-
gent on the performance (ie, accuracy and relevance) of

Table 4 Clinical associations not found in the Original Medline 1000 dataset

ICD-9 code Description ICD-9 code Description

Association
p value
derived from
clinical dataset

Clinically
surprising?

Citations
found
(PMID)†

1st percentile (highest ranked associations)
719.46 Joint pain, lower leg 848.9 Sprain and Strain, unspecified site <5×10−324 No 21549978

9343643
172.1 Malignant melanoma of skin and

eyelid
190.3 Malignant neoplasm of conjunctiva <5×10−324 No 21478094

10811089
250.71 Diabetes with peripheral

circulatory disorders
337.1 Peripheral autonomic neuropathy <5×10−324 No 20724598

2779736
153.0 Malignant neoplasm of colon 230.4 Carcinoma in situ of rectum <5×10−324 No 21125511

6894080
309.28 Adjustment disorder with mixed

anxiety and depressed mood
724.2 Lumbago <5×10−324 No 21665125

18673099
25th percentile
535.50 Gastritis and gastroduodenitis 787.6 Fecal incontinence 4.8 x10 −68 * 16712555
518.0 Pulmonary collapse 876.1 Open wound of back 9.8×10−68 No 17554992
474.0 Chronic tonsillitis and adenoiditis 558.9 Non-infectious gastroenteritis and colitis 7.6×10−67 Yes 12080166
377.39 Optic neuritis 432.1 Subdural hemorrhage 7.8×10−67 Yes
307.59 Eating disorder 564.01 Slow transit constipation 9.9×10−68 No 19139750

10925980
50th percentile
600 Hyperplasia of prostate 747.61 Gastrointestinal vessel anomaly 1.89×10−23 Yes
296.20 Major depressive affective

disorder
734 Pes planus 3.5×10−23 Yes

164.8 Malignant neoplasm of
mediastinum

427.89 Cardiac dysrhythmia 3.7×10−22 No 15284266
21387697

227.0 Benign neoplasm of adrenal
gland

788.41 Urinary frequency 5.3×10−22 Yes

250.51 Type 1 diabetes with ophthalmic
manifestations

959.5 Finger injury 1.9×10−21 * 18820219

75th percentile
217 Benign neoplasm of breast 569.85 Angiodysplasia of intestine with hemorrhage 4.7×10−06 Yes
362.31 Central retinal artery occlusion 836.0 Tear of medial cartilage or meniscus of knee 4.7×10−06 Yes
373.32 Contact and allergic dermatitis of

eyelid
656.90 Unspecified fetal and placental problem, affecting

management of mother, unspecified as to episode of
care or not applicable

4.7×10−06 Yes

110.5 Dermatophytosis of the body 246.2 Thyroid cyst 4.7×10−06 Yes 1607406
011.90 Pulmonary tuberculosis 701.1 Keratoderma, acquired 4.8×10−06 Yes 9828554

100th percentile (lowest ranked associations)
459.9 Circulatory system disorder 684 Impetigo 0.99 * 22642914
171.9 Malignant neoplasm of

connective and other soft tissue
333.1 Essential tremor 0.99 Yes

189.0 Malignant neoplasm of kidney 795.5 Nonspecific reaction to test for tuberculosis 0.99 Yes 20623161
225.3 Benign neoplasm of spinal cord 558.9 Non-infectious gastroenteritis and colitis 0.99 Yes
378.31 Hypertropia 722.10 Displacement of lumbar intervertebral disc without

myelopathy
0.99 Yes

These were selected from the left-most area in figure 3A. Associations become more clinically surprising as their ranking decreases. Whether an association was clinically surprising was
independently determined by two physicians (κ statistic 0.75; 95% CI 0.48 to 1.01). A manual search for citations by each physicians revealed potential associations that were not
detected with the automated approach using MetaMap.
*Opinions for which the physicians differed.
†If only one citation is listed, it means that only one reviewer found a citation that supported the association. If two are listed, each reviewer found at least one citation to support the
association. If none are listed, neither reviewer was able to find a citation to support the association.
ICD-9, International Classification of Disease, V.9; PMID, PubMed Identifier.
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MetaMap. Processing free text is complex and MetaMap,
similar to many other NLP-based named entity extraction
systems, can introduce systematic errors in its classification of
clinical concepts.28 60–63 One recent study, for example,
reported an F-measure of 61% when MetaMap was applied to a
biomedical corpus including Medline abstracts.64 Nevertheless,
with the continued support from the NLM, the performance of
MetaMap is expected to improve over time,23 and in certain use
scenarios it has been demonstrated that MetaMap outperforms
human annotators.65 Further, there have been studies showing
that MetaMap is able to identify a broader range of concepts
than other NLP systems.66

It is also worth pointing out that in our experiments we were
not attempting to compare the coding accuracy of MetaMap to
other named entity recognition systems, nor were we trying to
compare the accuracy of MetaMap to the accuracy of ICD-9
coding in clinical encounters. The goal of converting the con-
cepts in the Medline citations into ICD-9 codes was to have a
common coding framework with which to compare both the
clinical and Medline datasets. Named entity recognition and
ICD-9 coding are very different tasks, and often follow different
‘rules’ for converting text into their respective coded counter-
parts. The clinically assigned ICD-9 codes themselves represent
an abstraction of the diagnoses in clinical text and it may not
always be the case that the levels of granularity of codes from a
clinical dataset would match those identified from the literature.
We attempted to address the potential granularity issue by
merging the codes in our ‘Simplified’ datasets. Still, it is import-
ant to note that the two datasets were not created with the
intention of being compared in this manner, and the base
entities (abstracts vs patients) from which the data were
extracted are also not directly comparable.

The identification of falls related to graft-versus-host disease
(GVHD) due to a typographic error (‘fail’→‘fall’) in an abstract
we reviewed (table 3) demonstrates that more work is warranted
to accurately identify concepts in the correct context. Yet, this
spurious literature support does not rule out the existence of
this relationship, which was found in our Clinical dataset.
Indeed, patients with GVHD can experience balance impair-
ments67 which could, in turn, result in falls, even if this associ-
ation is not explicitly mentioned in the citations we analyzed.
This general assertion is supported by the results shown in
table 4 which demonstrate that in multiple cases experienced
clinicians could identify citations supporting the clinical associa-
tions while the automated approach was unable to.

In the experiments reported in this paper, we used two dis-
tinct score thresholds (1000 and 600) to process the results gen-
erated by MetaMap. The use of the MetaMap score of 1000
may have been too restrictive, not allowing the system to detect
variations of a concept, and could have excluded many potential
concepts that were present in the Medline citations. This is why
we also used the threshold of 600, which was lower than scores
commonly used in prior studies, to make sure the results
achieved were more inclusive. One risk of reducing the thresh-
old to 600 is a higher likelihood of incorrect text classifications
yielding more clinically irrelevant associations. Yet, even with
that potential loss of accuracy, there were still many clinical
associations not identified in the Medline dataset.

In prior literature, studies have either not reported the specific
MetaMap scores used24 28 68 69 or have reported seemingly
arbitrary thresholds for including concepts in their work.
Thresholds of 700,70 800,71–73 850,74 900,75 and 95076 77 have
all been used in the past, as well as perfect scores of 1000.78 79

Further, some studies have used the highest ranking score

among all candidate concepts for inclusion, with no mention of
a minimum threshold.80–82 While it has been stated that the
threshold can ‘usually be determined simply by examining
MetaMap output for typical text in a given application’,83 there
appears to be no consensus about the optimal MetaMap score
above which results should be retained. This lack of a consensus
may affect the generalizability of research using such tools,
including our current study.

CONCLUSION
This work demonstrates the potential utility but persisting chal-
lenges of using large biomedical knowledge repositories for
identifying novel relationships derived from clinical datasets. At
a broad scale, additional filtering approaches will likely be
needed to reduce the size of the set to a reasonable number for
expert review, and the addition of other resources beyond
Medline could help to distinguish novel associations from well-
known ones. Improved NLP and concept extraction capabilities
would also be expected to play a significant role in improving
the performance of such an approach. Informatics researchers
should consider the implications of these promising, but poten-
tially limited, data mining approaches when exploring ‘big data’,
and how the findings should be presented and interpreted.
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