

High Performance Java Card Operating System

Mohammad R. Eletriby1, Mohamed Sobh2, Ayman M. Bahaa-Eldin3 and Hossam M.A. Fahmy4
Computer and Systems Engineering dept.

Ain Shams University
Cairo, Egypt

e-mail: 1mohammad.eletriby, 2mohamed.sobh, 3ayman.bahaa@eng.asu.edu.eg
4hossam.fahmy@ieee.org

 Abstract—Due to the fast evolving of trusted computing
environments and internet-of-things an eager need has been
established for open platforms which support interchangeable
technologies to co-exist without threatening system’s security.
Certainly, future embedded applications will need high
performance operating systems to support the intensive-
computing algorithms required for satisfying acceptable
response and secure the application inside the vulnerable open
environment; hence, new inevitable requirements for embedded
operating systems have arisen including hard real-time
response, support for native applications, system openness and
system scalability. This paper introduces a new design for secure
and open smart card operating system, called ESCOS (Egypt
Smart Card Operating System), based on the prevalent Java
Card technology. The new design provides competitive
characteristics in the main three factors of judging smart card
platforms; namely, system security, supported technology and
system response. In addition, ESCOS is designed to have high
degree of modularity and re-configurability to meet fast-
changing business needs and diverse hardware platforms.

Keywords-operating systems; computer security; Java Card;
multi-application smart cards; embedded software design;
cryptography systems

I. INTRODUCTION
Recently a lot of research have been conducted in the area

of smart card applications in governmental, financial and
military sectors, however, few contributions have been made
in operating systems for small cryptographic devices like
smart cards/tokens. For years, smart card operating systems
have been dominated by research labs of industrial entities
particularly the major chip providers. One of the contributions
of this paper is to shrink the gap between academia and
industry in the field of smart card operating systems and to
encourage more public research in this field; hence enrich
literature and improve smart card systems development.

The open smart card operating system proposed by this
paper depends on Java Card technology the dominating and
widely used technology for smart card systems development.
Recently, more partners are joining the list of Oracle
authorized licensees for Java Card technology. At the time of
this paper the list includes more than 30 licensees including
the major chip providers; namely, NXP, G&D and
STMicroelectronics [11].

Vendors from different sectors including financial,
transport and military have recognized the high potential of
Java Card technology. For instance, Proton World system the
widely adopted ePurse system in Europe, which chose Java
Card technology for its operating systems for its high security,
flexible functionality and wide availability. On the other side,
Java Card technology has influenced telecommunication
sector very early by providing a dedicated API for SIM
applications starting from Java Card specifications 2.1, since
then Java Card has been used as the basic programming
technology for GSM systems [4].

 Obviously, Java Card has established an eminent position
in secure smart card development for its easy application
development, leveraging the well-established API
specification, which enhances code re-usability and provides
high-level interface for application developers. In addition,
Java Card is equipped with inherent security features, which
include strong memory protection along with applet firewall.
Furthermore, Java Card is fully hardware independent, i.e. an
applet using Java Card 2.2 can execute in any Java Card 2.2
enabled smart card regardless the underlying hardware. All
these advantages together makes Java Card the original way
for programming smart cards.

A. Motivation
Despite the numerous benefits of Java Card, the major

drawback is the relatively slow execution time particularly for
asymmetric cryptographic operation and intensive memory
access. This inconvenience is contributed to the interpretation
of applet codes. The main contribution of this research work
is to provide a prototype for high performance Java Card
operating system using a 3-factor enhancing technique. First,
the novel operating system layered-architecture, second the
enhanced Java Card Virtual Machine design, and last
leveraging GlobalPlatform standard to support for native
application deployment for very-fast response requirements.

Several remote authentication techniques have been
purposed that are hindered by the limited performance of
current operating systems. Mainly, these techniques are based
on one-way hashing for its low computational cost. ESCOS is
developed to realize the feasibility of developing open smart
card operating system that provides high security, fast yet

2014 Eighth International Conference on Software Security and Reliability

978-1-4799-4296-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE.2014.16

30

2014 Eighth International Conference on Software Security and Reliability

978-1-4799-4296-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE.2014.16

30

2014 Eighth International Conference on Software Security and Reliability

978-1-4799-4296-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE.2014.16

30

2014 Eighth International Conference on Software Security and Reliability

978-1-4799-4296-1/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE.2014.16

30

secure content management and competitive response
especially for security functions; in order to reconsidering
high computational cost cryptographic algorithms that
provide better security. A smart card operating system with
such features will attract application developers to propose
new real-time applications for smart cards with higher
security prospective. For instance, a full biometric
authentication application that securely store biometric
information along with processing the matching algorithm on-
card. In addition, the proposed operating system will help in
the evolution of future SIM cards, remote entrusting
technology by using smart card as a Trusted Device, and
Identity Management systems for entities authentication
using digital identity (e.g. eID and ePassport).

B. Contributions
The contributions of this paper include:
� Involving academia in smart card operating system

design, which recently has been fully dominated by
major chip providers.

� A prototype for open Java Card operating system with
significant performance improvement through new
layered architecture, enhanced Java Card Virtual
Machine design and support for native code
deployment.

� A step towards a true general-purpose smart card
operating system that can host applications from
different technologies.

� Realization of state-of-the-art smart card hardware
features including enhanced protocol support, Memory
Management Unit, enhanced copy machines and on-
board memory encryption.

C. Smart Card Operating System Requirements
Recently, smart cards are involved in many public and

private sectors applications in governmental, financial and
military sectors. Those sectors developed many standards to
specify the security and the operation requirements of smart
cards. Examples of such standards that describe specific
operations and services requirements are: EMV for banking,
ICAO for e-passports, CEN/ETSI and GSM for mobile
communication, HIPA for healthcare. Concerning security
over the system-level and module level the main standards
are: FIPS 140(1-3), FIPS 201, CC (EAL 1 to 7). The following
standards describe the communication, software and
hardware requirements: ISO/IEC 7816, ISO/IEC 14443 and
ISO/IEC 15693.

Clearly, those specifications introduce a big challenge for
both software and hardware development for smart card
operating systems [6], It is required that the smart card
operating system supports main standards for
communication, security and application management and to
pursue international certifications with higher security levels.
Probably this will build trust with application providers.

Operating system design should support various
communication protocols to facilitate the smart card usage
through contact and contactless terminals and should provide

flexible, efficient, reliable and secure high level programming
language to facilitate application development, along with
support for low-level programming to allow vendors to
develop complex applications.

In terms of security, the design should protect sensitive data
like Keys and PINs against software and hardware attacks.
Also, protect applications data in multi-application and multi-
vendor environments. While malicious applications are kept
isolated, mutually-trusted applications should find a mean of
secure inter-application communication if required. For
application management security, vendors are allowed to
perform secure application download directly while issuing
the card or remotely after personalization phase. State-of-the-
art security algorithms should be provided to applications
with acceptable generation and usage time.

Since one of the main advantages of operating systems is
to isolate hardware details from application layer, the design
should provide portable software design to reduce effort and
cost required for porting to other smart card hardware. At the
same time, operating system should fully exploit the
advantageous enhanced hardware support provided in modern
smart card chips to maximize utilization. The design should
be modular and exhibits high-degree of configurability to
meet wide spectrum of applications and varying hardware
platforms. As smart cards are very limited in memory, smart
RAM allocation is required to efficiently utilize the small
amount of memory especially in challenging multi-
application environment. On the other side, permanent
memory should be managed through a common file system to
allow secure data storage and sharing.

II. SMART CARD OPERATING SYSTEMS TYPES
Many Smart card operating systems are proposed in the

literature in the last 10 years, some of them are educational
operating systems like FlexCOS [30], and others are
proprietary and commercial. However, to the best of our
knowledge, the major available smart card operating systems
can be divided into three groups: Global Native, Global Non-
Native and Global Mixed.

A. Global Native Smart Card OS
This type of operating systems supports GlobalPlatform

specifications along with the support for application
development using native programming language like C or
Assembly. STARCOS [19] is one of the most powerful native
operating systems. It allows developers to make high
performance applications. However, the major drawback of
native development that it requires deep experience with
machine programming and may lead to unstable or unsecure
applications if not programmed properly. On the other side,
smart card operating systems that supports high level
programming like Java or MEL is normally supported with
many libraries to facilitate application development, in
addition to secure framework to protect sensitive data and

31313131

manage inter-application communication. Developing similar
behavior in native applications may lead to better
performance and more security, but it requires more
development time and more machine programming
experience.

B. Global Non-Native Smart Card OS
Due to the rapid development of smart card applications, it

is required to support high-level languages, which allow fast
development, and fulfill the security needs of smart card
applications. Two popular operating systems are available:
Java based OS and MULTOS.
1) Java Based Smart Card OS

This type of smart card operating systems supports
verification and execution of Java bytecode according to
JCRE specifications early provided by Sun© Microsystems.
In 2011 Oracle© announced the release of version 3.0 Classic
and Connected editions of the Java Card specifications, where
the Classic edition supports automatic garbage collectors,
more data and more libraries, furthermore Connected edition
allows remote communication and multi-threading [13]. Fig.
1 illustrates the basic architecture of Java Card OS [1].

Fig. 1. Java Card architecture

Starting from Java Card 2.1, Java Card allows also for
inter-process communication via sharable-interface class.
Once the requesting applet (client applet) gets the shareable
interface, it can proceed with direct communication with the
other applet (server applet). It is a matter of object sharing
controlled by the JCRE which, again, is well established in
the traditional Java system. However, the mechanism of
object sharing in Java Card 2.1 is vulnerable to security
attacks by using existing sharable interface to access other
sharable interfaces without permission, also, accessing to
shareable interface by future applets may be impossible [3].

Java Card supports downloading of custom cryptographic
algorithms (developed as Shareable applets) into the system
to enable the developers to extend the Java Card API if
required. An example of such extension is the implementation
of Elliptic Curve Integrated Encryption Scheme (ECIES) over
a Java Card v.2.2.1 presented in [32]. However Java language

is not efficient in performing complex algorithms like the
ones used in cryptographic functions. High performance
computing requires native development support, which are
not supported by Java operating systems. In addition, Java
Card OS does not provide ISO 7816 commands neither
internal File System implementation. Alternatively, applet
developers should implement the command processing and
the File System manipulation if required by their applications.

The most obvious drawback of Java Card OS is the slow
execution speed. A rough comparison between a native code
and an efficiently-programmed Java applet that implements
common smart card commands yields a 30% longer execution
time, furthermore the speed can get worse if the applet is not
efficiently programmed [4].
2) MULTOS Smart Card OS

MULTOS allows developers to use MEL (MULTOS
Executable Language), Java, C or Basic languages to develop
smart card applications. All supported languages including C
are converted to MEL language before downloaded into the
card. The OS then executes MEL code using special
hardware-independent interpreter. Unlike Java Card OS,
MULTOS does not provide multiple separate Security
Domains, it depends on strong authentication at application
loading, internal isolation and on-chip application conversion
and verification. MULTOS itself interferes in the application
header signing to allow issuer to install their applications [10].

C. Global Mixed Smart Card OS
Both native and non-native operating systems could not

provide a complete solution that fulfills all customers’ needs.
For that, trials are made to introduce a mixed model, which
resolves the whole or parts of the problem. In an attempt to
reach the mixed model architecture, JCOP 2.4 R2 [16] allows
developers to write native libraries and install them via OS
provider in the Secure-Box. Secure-Box is a protected user
mode internal application where developers can access the
new library routines via special Java interface. It provides real
native development solution and successfully used by many
vendors to add high performance features to their applications
like specific security algorithms, accurate fingerprint
matching, etc.

Another remarkable attempt towards the mixed model is
Caernarvon OS announced in 2008 by IBM® [2,5,8]. The
design targets CC EAL7 security level, however, the team
succeeded to provide a system prototype and certify the
cryptographic module at EAL5+ security level. Caernarvon
OS allows developers to write applications in Java or native
language like C or assembly and it provides two built-in
applications; namely, ISO 7816 and Card Manager. Although
Caernarvon OS involves many distinct features, it has also
some imperfections. It does not support contactless or USB
communication interfaces although contactless is very
common and used in many applications since year 2000 [21].
In addition, USB communication is promising in smart card

32323232

communication due to its high data rates and it can be used to
build USB tokens instead of using smart card readers or
UART/USB converters.

III. ESCOS OVERVIEW
ESCOS is a smart card OS designed to satisfy all

requirements mentioned earlier and to target high security
certification level. The system supports both Native and Non-
Native (Java) applications, provides modular and hardware-
independent design and fully complies with relevant smart
card standards and prepared ready for certification process
according to the latest Common Criteria evaluation [12].
ESCOS provides state of the art cryptographic techniques
including RSA up to 4096 expandable to 8192, also it
supports ECC, SHA, AES, DES and RNG. ESCOS supports
T=0, T=1 and contactless communication protocol T=CL;
while USB support is under development.

ESCOS resolves many security issues by providing
onboard Java bytecode verification. For instance, post-
issuance application download through unreliable
environment can result in deploying malicious applets that
can manipulate or destroy other applets on the system.
Unfortunately, relying on offcard verifier is not a trusted
solution, since the verifier itself could be suspicious or the
verified code could be modified after verification; Hence,
onboard verifier is the ideal solution. Java firewalls are also
provided for the separation between applets. For native
applications, they are isolated from the operating system and
from other applications using MMU which is responsible for
full memory virtualization by translating virtual addresses,
used by the processor, into physical addresses. If the memory
access operation is invalid, an exception occurs and the
execution is directed to the exception handler. By this means,
the MMU provides an efficient hardware-based caching and
swapping mechanism without degrading the performance,
which cannot be achieved by any software implementation.

Moreover, the system provides enhanced hardware features
that prevents physical memory attacks. Many recent papers
have discussed countermeasures to prevent memory attacks,
and it seems that the most promising mechanism is to use
lightweight low-latency cryptographic modules, like the one
proposed in [31]. This is the countermeasure followed by our
design by using the integrity and secrecy of on-chip memory
protection module. This module performs encryption of data
and addresses for all kinds of the on-chip memory (RAM,
EEPROM and ROM) to de-correlate the actual location of
data from the logical addresses in memory.

IV. ESCOS ARCHITECTURE DETAILS
Fig. 2 shows ESCOS internal architecture. Before detailing

the major components of ESCOS, it is worth noting that the
design attains high modularity and re-configurability, where
some modules can be excluded from the build according to
business needs or hardware constrains. Following modules

can be excluded without a need for re-coding: CIU Driver,
UART Driver, USB Driver, ISO 7816 T=0/T=1, ISO 14443,
JCVM, Cryptographic Algorithms and Built-In Applications.
ESCOS architecture is based on following major modules:

A. Kernel
The whole OS consists of three layers; namely, HAL,

Kernel, and application layer. Kernel layer features an
extensive interface that provides common support for both
native and Java applications. The number of layers is intended
to be minimized to avoid extra usage of stack since most of
smart card hardware provides very small stack size, e.g., NXP
P60 provides 128 Bytes stack. If the compiler is configured to
use software stack it increases code size and slow down the
performance. Even with software stack there is no chance to
have deep stack due to the limited memory size (<8KB).

Fig. 2. ESCOS detailed architecture

B. HAL Layer
HAL layer is optimized to minimize the porting cost and to

maximize the performance by exploiting the enhanced
hardware support provided by the NXP P60 chip. HAL design
is very critical as it significantly affects the system
performance and portability; for instance, moving kernel
operations inside HAL enhances the overall system
performance, however it decreases system’s portability, so it
was essential to use execution profiling tools to determine
which low-level operations have the major effect on
performance and should be placed inside HAL.

C. Issuer Security Domain
The ISD is a built-in application that is involved in several

processes performed by the card that need applying security
policy for authentication, integrity and confidentiality, e.g. in
downloading and installing of applications this security policy

33333333

is needed to authenticate the off-card entity and to ensure the
integrity of the loaded contents. The ISD is responsible for
establishing and terminating of Secure Channels with the
terminal device to maintain the confidentiality of the
communicated data, if required, through Secure Messaging.
The Secure Channel Protocol used in this design is SPC03
with R-MAC/R-ENC support, true random Card Challenge
and 16 bytes AES key set [17]. As the design is concerned to
be compliant with the standards, ISD is compatible with GP
specifications version 2.2.1 with Runtime Messaging support,
a feature that enables a selected application to use the services
of the ISD on the background [14]. For example, an applet
can depend on the ISD to authenticate the external entity and
to provide Secure Messaging without implementing its own
Secure Messaging protocol; obviously, this saves application
code size and simplifies application development.

D. Card Manager
The Card Manager supports all Card Content Management

operations (loading, installation, personalization and deletion
of applications) for both native and non-native applications,
and is designed to minimize the time required for load and
install of applications.

Several card evolution mechanisms proposed in the
literature use load-time security verification; for instance, the
security-by-contract approach for Java Cards in [27,28,29]
which proposed a claim checker algorithm at load-time that
analyzes the CAP file and matches it with the contract(claim)
attached with the downloaded file blocks. indeed this process
is time consuming and is not appropriate for the requirements
shown at the beginning of this paper, also the claim checker
does not provide any solutions for code verification in case of
native applications which are more effective in malicious
actions since they can directly access the card memory.

On the other hand, without threatening the card security,
ESCOS design permits hostile applications to be loaded and
installed to the card provided that the application provider can
authenticate with the Security Domain. It is the role of the
hardware, represented by the MMU, and the system,
represented by Java firewall and GP Trusted Framework, to
prevent malicious actions regarding memory and inter-
application communication. MMU will protect memory
access against hostile applications. GP Trusted Framework is
responsible for managing inter-application communication,
where the requesting application (client application) is
checked for illegibility through checking its privileges and the
associated Security Domain, if found not illegible, GP
Trusted Framework will not grant such communication.

E. Communication Module
The design of CIU, UART and USB modules uses all the

enhanced protocol support available in the NXP P60 chip. For
instance, the Prologue Buffering and Suppression mechanism
is used to suppress T=1/T=CL header of the incoming
commands from being received by the receive buffer. As a
consequence, the re-transmission of blocks when errors occur
is handled completely in the HAL layer, which helped in

improving TPDU handling and the receive/transmit buffer is
merged into one single buffer to save precious RAM.

For accurate transmission over contactless interface, the
design supports a transmission delay mechanism which waits
a configurable time after data is written to the transmit buffer,
then the transmission starts. This allows setting the CPU in
power saving mode during transmission, which significantly
reduces the electromagnetic disturbance emissions [15]. The
design also supports a Firmware routine for switching the
contactless baud rates for reception and transmission during
handling of PPS command. The routine guarantees an
efficient error-free baud rate switching with maximum
supported baud rate of 848 kbps [33]. To increase the speed
of communication and increase throughput, Short Guard
Time is used for T=1 protocol so each character frame is
transmitted in 11 etu instead of 12 etu [18]. This is estimated
to save about 10% of the effective data transmission rate [4].

F. JCVM Module
The JCVM is fully responsible for securing the applets

while installation or execution via firewall protection. JCVM
is built-in native application that can be installed or deleted;
also, developers can freely provide other implementations for
JCVM or replace it completely with other interpreters like
MULTOS or .NET virtual machines. JCVM module is
implemented as a software module rather than relying on a
Java coprocessor which adds a substantial cost to the
hardware platform making Java coprocessor not suitable for
our design requirements. Although Java coprocessor
dramatically increases execution speed, the coprocessor
should be power efficient especially for dual interface cards,
since power requirements are so strict in contactless
operation. Several papers proposed power efficient Java
coprocessor architectures e.g. the one provided in [33]. JCVM
internal architecture is provided in Fig. 3. The CAP Converter
is responsible for converting the compiled Java code (*.IJC)
to special internal representation, to save memory and to
speed up the processing. The conversion process is performed
externally since it does not affect the security.

Fig. 3. JCVM internal architecture

34343434

The Onboard Verifier is responsible for applying onboard
bytecode verification algorithms to check, statically, the
correctness of the application’s bytecode in terms of syntax
and type matching. Since checks are done statically, there is
no need for re-checking at runtime, which simplifies JCRE
design. Providing onboard verifier will avoid relying on
offboard verifiers that might be untrusted, hence emphasizing
downloaded applications security. However, onboard verifier
has limitations due to high memory usage and high
computational cost which are critical factors in smart cards.
Many algorithms for onboard verification have been proposed
recently to lessen these limitations, for instance the one
provided in [20]. Onboard verifier support is mandatory to
provide the highest security level according to CC
certification standards. On the other side Memory Manager is
responsible for allocating transient and persistent memory
objects. Java Card uses persistent memory extensively to
maintain objects state along the whole card life cycle. When
the card is reconnected, Java applets does not need to restore
previous objects state because it is already stored in the
persistent memory.

G. File System Module
ESCOS provides multi-level File System as defined in ISO

7816-4 that supports transparent, cyclic and record-based
elementary file structures. The File System uses EEPROM
allocation module to allocate memory objects for file headers
and files data. For security purpose, the files headers are
separated from files data, this is a design issue that is adopted
in several embedded File system implementations, for
example the SDFS in [25]. The reason behind this separation
is to prevent excessive write to data area from flipping the
security bits in the headers if they reside in the same memory
block. In contrast to SDFS, the resolving of physical memory
addresses in ESCOS is done via the MMU since depending
on software module in SDFS can’t prevent hostile native
application from accessing other applications data, in this case
the design should imply file verification at load time which is
not acceptable in open smart card systems. ISO 7816 is a
built-in application introducing the ISO commands for file
management. A common File System allows different
applications to share the implementation and the data of the
File System without the need to re-implement it inside each
application.

H. Transaction Mechanism
Transaction mechanism is designed to minimize the

transaction time and to be compliant with the Java Card
specifications. The goal is to support a wide sector of different
application requirements especially contactless applications,
which require very short transactionntime for that it is more
probable to power failures. The transaction mechanism
provides its services for both the File system and the JCVM
module so that every write operation to a file or a Java object
is atomic to ensure data integrity. Although several recent
transaction mechanisms for smart cards use transaction buffer
caching in RAM, in ESCOS the data is written directly to the

EEPROM buffer to minimize the number of memory
accesses, hence it fulfills the short transaction time required
in contactless applications like automated fare collection and
electronic toll collection systems. In addition, the use of fast
copy machine in ESCOS reduces the impact of access locality
and storage locality of Java objects so no need to use hash
tables or logging entries that increase overhead and
transaction time [26].

I. Design Limitations

HAL layer is fully dependent on the underlying hardware
and it is not feasible to support complete portability at this
level. The basic operations of smart card hardware are
abstracted into extensive interface, which can fit from target
to another, however routines implementation would require
some porting effort according to the hardware platform.

ESCOS does not support flash memory driver, which is
essential when using smart cards as dongole devices with
extended flash memory. In addition, RAM compaction is not
implemented, so released RAM blocks are not returned to
RAM free space. This limitation may affect the total number
of multi-selected applications supported through different
logical channels. Simultaneous communication with ESCOS
through different interfaces (contact and contactless) is not
supported. In addition, simultaneous transaction sessions are
not supported, i.e. an ongoing transaction should be
committed first before beginning a new transaction. The size
of transaction buffer is fixed and cannot be expanded
dynamically according to data size of the transaction. This
limits the transaction space per session, so an application may
be required to subdivide a transaction into smaller transaction
units. Similarly, file system memory partition is fixed which
limits number of applications that can be downloaded into the
card. File system cannot be expanded once the card is issued.

Cryptographic algorithms are implemented for Fame2
coprocessors. This limits the portability and certification of
the system on other platforms. For instance, when certifying
the security module according to FIPS, certification should be
repeated for every new port of the security module. Card
manager does not support concurrent content management
operations requested through different logical channels. In
addition, due to memory constraints, number of logical
channels permitted to be open simultaneously is 10 channels.
Regarding JCVM, the implementation does not support
garbage collector.

V. IMPLEMENTATION AND HARDWARE PLATFORM
ESCOS is implemented according to agile iterative process.
The implementation considers the following points: stack size
is very small, so number of system layers is minimized and
recursive calls are forbidden. Transaction operations should
be used to update security settings and to manage the card
contents, bearing in mind that excessive write access to
EEPROM may damage the memory. Secure information, like
keys and PINs, should be stored encrypted. Assembly
language is allowed only for HAL modules, In addition, the

35353535

available hardware, including the enhanced features, should
be fully exploited along with supporting alternative software
incase hardware is not available for other ports. Internal
functions should use structures to pass the parameters.
Functions should use workspace structures if the number of
local variables is large. It is recommended to reuse buffersand
avoid global variables.
The building blocks for ESCOS were mainly the HAL code
samples generously provided by NXP to demonstrate the
functionality of different components in the hardware
platform SmartMX2. These samples are completely re-
implemented to meet the new design requirements and the
custom interface. In addition, the firmware responsible for
adjusting baudrate of contactless interface is used without
intervention, since it provides the most stable behavior. All
other software modules of the system are completely designed
and implemented from scratch bearing in mind CC
certification requirements.

To achieve the main security requirements of ESCOS we
have to choose the right hardware platform which supports
adequate protection and virtualization methods to separate
applications from OS and from each other. As discussed in
[9], to provide highly secure environment, the hardware
platform should provide protection against physical security
attacks e.g. power glitching, clock glitching, out of range
temperature attacks, differential power analysis and radio
frequency leakage. In addition, the platform should provide a
fully virtualized memory where the application should be
isolated from physical addresses via a translator unit. This
memory model can be implemented using MMU that
provides a fully virtualized address space for I/O operations.
Furthermore, the platform should provide separation between
different execution domains (user mode, firmware mode and
system mode) to prevent unauthorized access to illegal
address spaces; at the same time, there must be a secure
mechanism that allows secure transfer of control between the
different domains.

The suitable platform to support the previously mentioned
features was chosen to be SmartMX2 P60 platform which
provides better performance than the previous SmartMX P5
through faster cryptographic coprocessors, more resistant
against physical security attacks, more power-efficient design
especially for contactless operation, and faster memory
module. However, it comes with a factor of 1.3 higher cost
than the high end P5 chip. A performance comparison
between P60 and P5 chips is presented in the next section.

VI. PERFORMANCE EVALUATION
As the main goal of developing ESCOS is to realize a high

speed, secure, and high assurance operating system; the
evaluation process followed depends on comparing the
response time of ESCOS with the latest operating systems
available in market like JCOP family. Response time is
chosen as the evaluation criterion, since this is the most
convenient method followed by many research papers that
compare security operations running in limited-resources
platforms like smart cards, e.g. the paper presented in [34].

Fig. 4 shows the testing environment used. Keil IDE with
SmartMX2 plugin is used to deploy ESCOS code into the
emulation environment along with controlling and monitoring
code execution. Emulation environment is based on Ashling
SmartICE Emulator for P60 smart card chip. The terminal is
simulated using JCOPShell tools operating from Eclipse IDE.
The terminal is used to download the testing applets and
execute the testing scripts. In case of testing JCOP cards the
emulator environment is replaced with JCOP cards.

Fig. 4. ESCOS testing environment

The JCOP21 v2.3.1 and JCOP v2.4.1 R3 evaluation cards
from NXP were chosen due to their considerable performance
and widespread. In addition, they represent the latest smart
card technology available to users and they follow the same
technology as ESCOS by supporting JavaCard technology
and GlobalPlatform.

JCOP and ESCOS use different hardware platforms. JCOP
uses SmartMX P5 chip with FameXE cryptographic
coprocessor while ESCOS uses the next generation
SmartMX2 P60 chip with Fame2. NXP datasheet mentions
that the computation performance of P60 is faster than P5,
where some computation modules provide faster response up
to 3 times while memory transfer module provide faster
response up to 5.7 times; cryptographic modules provide
faster response up to 5 times [7]. Actually, those numbers
describe the extreme performance for some individual
operations in best-case scenario, e.g. the fast memory transfer
provides maximum speed if the destination is in RAM
otherwise the performance is comparable. Table 1 provides
the comparison measures.

TABLE 1. PERFORMANCE COMPARISION OF P60 VS P5

 P5 P60 Ratio

Operating�Frequency 5�MHZ� 5�MHZ� 1.0�

Instruction�Set� 8�Bit� 8�Bit� 1.0�

AES�Encryption� 168�ms� 42�ms� 4.0�

AES�Decryption� 30�ms� 14�ms� 2.1�

RSA�2048�Sign� 612�ms� 202�ms� 3.0�

RSA�2048�Verify� 151�ms� 92�ms� 1.6�

4K�Copy�to�RAM� 10�ms� 2�ms� 5.0�

4K�Copy�to�EEPROM� 55�ms� 49�ms� 1.1�

Pricing�(per�Unit)� 1� 1.3� 1.3�

36363636

Before presenting the results of the performed tests, it
worth comparing the operating systems according to the
supported features as stated in [22,23,24], Tables 2 and 3
summarizes the key features.

TABLE 2. FEATURES COMPARISON (1)

Ja
va
Ca

rd
�A
PI
�

ve
rs
io
n

G
P�
ve
rs
io
n

Ch
ip
�ID

T�
=�
0

T�
=�
1

T�
=�
CL

3D
ES

AE
S

RS
A

JCOP21�
v2.3.1 2.2.1 2.1.1 SmartMX�

P521 � � � � �

JCOP�
v2.4.1 2.2.2 2.1.1 SmartMX�

P5CD080 � � � � � �

ESCOS 2.2.2 2.2.1 SmartMX2
P60 � � � � � �

TABLE 3. FEATURES COMPARISON (2)

�

O
n�
ca
rd
�k
ey
�

ge
ne

ra
tio

n

M
ax
�R
SA

�k
ey

EC
C

SH
A

H
/W

�R
N
G

Co
py
�M

ac
hi
ne

G
lo
ba

lP
IN

Se
cu
re
�C
ha

nn
el
�

Pr
ot
oc
ol

PK
I�c
o�
pr
oc
es
so
r

JCOP21�
v2.3.1 � 2432 � 1 � � SCP02 FameXE

JCOP�
v2.4.1 � 2048 �

1,�
224,�
256

� � SCP01,�
SCP02 FameXE

ESCOS � 5024 �
1,�

224,�
256

� � � SCP03 Fame2

For all of the following performance figures some
foundation is considered while performing the test cases,
which are represented by the following points:

� The measuring criteria is the response time measured in
milliseconds and all timings are represented as averages,
where each test is carried out 10 times and the mean
value is considered.

� The communication protocol T=1 is used with the
maximum baudrate supported by the card under test;
however, the communication overhead is ignored, as it
is common in both platforms and do not affect the
results as it is no more than 10% of the total response
time.

A. Card Management Operations
Table 4 shows a comparison between the operating systems

under test in performing card management operations. The
operations include selection, authentication, application
management and card content interrogation. Obviously,
ESCOS system outweighs the JCOP systems with about a
factor of 4 faster performance in the majority of operations.
Furthermore, the application management performance,
particularly of loading Applets, is excessively better than its
opponents.

TABLE 4. CARD MANAGER OPERATIONS

Card�Manager�operations JCOP�v2.3.1
(ms)

JCOP�v2.4.1
(ms)

ESCOS
(ms)

SELECT�ISD 21.3 41.3 15.5
INITIALIZE�UPDATE 54.14 64.1 18.38
EXT�AUTHENTICATE 55.8 66.6 12.87
Put�Keyset 78.2 182.9 59.2
Replace�Keyset 85.16 166.2 51.3
Installing�server�Applet
INSTALL�for�Load 51.9 77.9 16.2
Package�Loading�Time 2755.8 3868.4 849.8
INSTALL�Server�applet 129.2 140.0 80
Installing�client�Applet
INSTALL�for�Load 52.6 138.0 16.4
Package�Loading�time 1270 1629 283
INSTALL�Client�applet 127.3 138.2 80.6
Retrieving�card�information
GETDATA�for�ISD and�Apps 122.1 151.4 37.4
LOCK�App 46.4 54.7 17.3
DELETE�Client�applet 1320 999.5 110.6
DELETE�Server�applet 1288 944.7 103.2
Delete�Package�with�
Related�applets 1335 1000.0 122.3

The performance enhancements of ESCOS in card manager
operations is for the following reasons:

� The support of better hardware accelerators and
memory management unit.

� The card manager in JCOP family is implemented as an
applet, so it suffers longer execution times due to JCVM
interpretation, while in ESCOS, card manager is a native
application that exploits the full speed of the processor.

� The load file data block hash verification and DAP
verification are not implemented in ESCOS since
basically ESCOS is developed with the objective of
allowing untrusted code, that is potentially hostile, to be
loaded into the card and to enforce security between
different applications at run time through MMU and the
ISD’s policy. The load time verification is a time
consuming operation since it is applied for each file
block to be loaded, consequently ESCOS achieves a
substantial gain in speed.

� SmartMX2 CPU implements an address cache
mechanism for improved performance of memory
accesses. This address cache works on a granularity of
16-byte blocks, i.e. each cache entry covers a 16-byte
memory window. If an address is used, which is covered
by the cache, the access time will be shorter than
accessing an address that is not cached.

� EEPROM features very flexible and fast programming
by using a 128-byte page register (intelligent write
cache) where it is possible to program 1 to 128 bytes of
EEPROM at a time. The bytes which shall be
programmed into the EEPROM have to be written first
into the page register making sure that only addresses
within the target 128-byte page are written to, then a
single programming cycle is executed to transfer only

37373737

the updated bytes in the page register into the EEPROM,
thus EEPROM endurance is increased. The result is a
dramatic increase in memory access operations [7].

� The memory compaction in JCOP system is at load-time
where the memory is compacted every time a new file
is loaded to the system. In contrast, compaction
mechanism in ESCOS is done only when no sufficient
memory is available for the current file block.

B. Security Operations
Table 5 shows a comparison in terms of the response time

to symmetric/asymmetric security operations. The operations
include key pair generation, encryption, decryption, digital
signing and verification. It is worth noting that on-card key
generation is a random-based process; thus, the figures given
are only average values. However, the key generation
function for ESCOS system shows distinct performance
especially for large key sizes (2048).

TABLE 5. SECURITY OPERATIONS

Asymmetric�operations JCOP�v2.3.1
(ms)

JCOP�v2.4.1
(ms)

ESCOS
(ms)

RS
A�
ke
y�
10

24
� Key�generation �2077 �2579 �1813

Encryption 210.3 310.0 182.0
Decryption 74.5 80.3 73.1
Sign 299.3 320.8 194.1
Verify 95.1 125.0 79.3

RS
A�
ke
y�
20

48
� Key�generation �23565 �14273 �5630

Encryption 863.0 715.3 213.0
Decryption 107.5 132.1 93.7
Sign 849.2 729.0 232.0
Verify 151.4 168.4 104.2

Symmetric�operations

AES�key�
128�

Encryption� 200.3 255.3 52.5
Decryption 45.4 71.1 26.7

AES�key�
192�

Encryption 207.4 253.0 57.3
Decryption 46.3 77.5 28.1

ESCOS shows better performance for almost all of the
security operations. Security operations are largely dominated
by the cryptographic software optimization and the hardware
speed of the cryptographic coprocessors. Particularly,
symmetric operations are completely performed in hardware
where the firmware layer provides the blocks handling and
the padding schemes. On the other hand, asymmetric
operations use hardware to perform primitive modular
arithmetic operations only leaving the software to implement
the rest of the generation, signing, and verification algorithms
beside the block handling and the padding schemes.

C. Performance Justification
1) System Design

� The SmartMX2 P60 chip provides increased calculation
performance of up to factor 3 to existing SmartMX
chips, also it provides enhanced orthogonal instruction
set that leads to faster execution of commands.

� The JCVM features a new CAP Converter design that
reduces the output IJC file size with about 30%
compared to regular CAP Converter in JCOP family
operating systems. In addition, the new structure of the
IJC speeds up reaching the components of the IJC by the
execution engine which dramatically increase the
JCVM performance.

� The internal architecture of the OS is optimized to
provide minimum number of layers, very thin hardware
abstraction layer, minimum modules interaction, and
very simple and powerful system APIs.

� EEPROM Management is isolated from Transaction
and File System modules and all of them are accessible
to upper layers modules. This allows fast interaction and
prevents redundant sub-modules. In addition, security
operations are available via high level and simple
interface or low level and direct interface. The low-level
interface is used directly by other modules like
communication and key management modules.

� The code optimized HAL layer that fully exploits the
available features in the underlying hardware provides
fast interaction between high-level layers and the
hardware.

2) Hardware Specifications
� The firewall between applications is provided by

hardware module (MMU) transparent to the system,
thus it does not put any burden over the card manager.

� Memory encryption is done by hardware to secure the
system memory with no load over the system
performance.

� Enhanced protocol support for both contact and
contactless interfaces that provides fast communication
response and decrease the communication overhead. In
addition, a CRC/LRC coprocessor that handles frame
errors transparently and efficiently justifies the distinct
communication performance.

� The improved architecture of the Copy Machine that
supports direct memory access to all types of memory
including the special function registers of the processor
enhances the memory latency and access performance.

VII. CONCLUSION AND FUTURE WORK
ESCOS provides open and scalable operating system

complied with standards and depends on the widely used Java
Card technology. It allows developers to provide business
applications using Java applets, and to provide complex and
high performance applications using native programming
language. Also, it fulfills all the requirements for secure, high
performance smart card operating system. The proposed
architecture achieves high performance via novel Card
Manager design and enhanced JCVM module, along with
employing the state-of-the-art advancements in memory
systems and cryptographic coprocessors technologies. On the
other hand, ESCOS provides better security; it uses MMU to
protect native applications, and uses byte code verification to
secure Java applets.

Since one of the main objectives of ESCOS is to reduce the
cost of porting, it is essential to realize this feature through

38383838

providing multiple ports of ESCOS especially for Infineon
16-bit SLE 76 and 32-bit SLE 88 chips in addition to ARM
32-bit Secure-Core chips. On the other hand, more work have
to be done to enhance the security of the Java system using
on-card modules. Bugs created at the byte code level cannot
be detected at run time so it can be exploited by hostile applets
to induce a security flaw. Therefore, the use of Byte Code
Verifier (BCV) is critical to ensure system security. Our
future work include proposing enhanced on-card BCV that
has little footprint on the system’s performance.

REFERENCES
[1] Jos´e Rafael, Trigueiro de Carvalho, "Comparative analysis of

authentication schemes on a Java Card smart card", Master Thesis,
Technical University of Lisbon, 2011.

[2] Paul A. Karger, Suzanne K. McIntosh, Elaine R. Palmer, David C. Toll,
and Samuel M. Weber, “Lessons learned building the Caernarvon high-
assurance smart card operating system”, IEEE Security and Privacy
Magazine, 2010.

[3] Dieter Gollmann, Jean-Louis Lanet, Julien Iguchi-Cartigny,
"Interprocess communication in Java and MULTOS", 9th Volume, IFIP
WG 8.8/11.2 International Conference, Springer, 2010.

[4] Wolfgang Rankl and Wolfgang Effing, “Smart card handbook”, 4th
Edition, John Wiley & Sons, 2010.

[5] Paul A. Karger, David C. Toll1, Elaine R. Palmer, Suzanne K.
McIntosh, Samuel Weber, and Jonathan W. Edwards, “Implementing a
high-assurance smart card OS”, Financial Cryptography and Data
Security, Lecture Notes in Computer Science Volume 6052, Springer,
January 2010.

[6] Damien Sauveron, "Multiapplication smart card: Towards an open
smart card", Elsevier, Information security technical report 14, 2009.

[7] "SmartMX2 family P60x040_052_080 VC", Objective Data Sheet,
Rev. 1.1, NXP Semiconductors, 2012.

[8] D.C. Toll, P.A. Karger, E.R. Palmer, S.K. McIntosh, S. Weber, “The
Caernarvon secure embedded operating system”, Operating Systems
Review 42, P. 32–39, 2008.

[9] P.A. Karger, D.C. Toll, S.K. McIntosh, "Processor requirements for a
high security smart card operating system" 8th e-Smart Conference,
Eurosmart, IBM Research RC 24219 (W0703-091), 2007.

[10] Kenneth R. Wilcox, "Multi-application smart cards: Card operating
systems and application security", 21st Computer Science Seminar,
2003.

[11] Oracle, “Java authorized licensees of Java Card technology,” 2014.
http://www.oracle.com/technetwork/java/javame/javacard/licensees/in
dex.html (accessed April 5, 2014).

[12] "Common Criteria for information technology security evaluation",
Version 3.1, Common Criteria, 2012.

[13] “Java card runtime specifications /Virtual machine specifications /APIs
reference”, Version 3.0, Oracle, 2011.

[14] "GlobalPlatform card specification", Version 2.2.1, GlobalPlatform,
2011.

[15] “ISO/IEC 10373-6: Proximity cards”, International Standards
Organization, 2011.

[16] “JCOP 2.4.1 product evaluation”, NXP Semiconductors, 2010.
[17] “Secure channel protocol 03 - Card specification v.2.2 – Amendment

D”, Version 1.1, GlobalPlatform, 2009.
[18] "ISO/IEC 7816", 2nd Edition, International Standards Organization,

2004.
[19] “STARCOS S 1.2 reference manual”, G&D, 2002.
[20] Berlach, R., Lackner, M., Steger, C., Loinig, J., & Haselsteiner, E.

(2014, January). Memory-efficient on-card byte code verification for
Java cards. In Proceedings of the First Workshop on Cryptography and
Security in Computing Systems (pp. 37-40). ACM.

[21] "ISO/IEC 14443", International Standards Organization, 2001.
[22] “P5Cx012/02x/40/73/80/144 family Secure dual interface and contact

PKI smart card controller”, Short data sheet, NXP Semiconductors,
August 2011.

[23] “NXP J3A080 and J2A080 Secure Smart Card Controller, Rev. 3,
Security Target Lite”, Evaluation documentation, NXP
Semiconductors, December 2010.

[24] “JCOP21 v2.3.1 on secure PKI smart card controller, Rev. 2”, Short
data sheet, NXP Semiconductors, August 2007.

[25] R. Asgari and R. Ebrahimi Atani, “Secure file management system for
Java cards”, International Journal in Foundations of Computer Science
& Technology, vol. 3, no. 5, pp. 1–11, Sep. 2013.

[26] Yu, Xiaoxue, and Dawei Zhang, "Optimization of transaction
mechanism on Java card", In Software Engineering, Business
Continuity, and Education, pp. 190-199. Springer Berlin Heidelberg,
2011.

[27] Gadyatskaya, Olga, Fabio Massacci, Federica Paci, and Sergey
Stankevich, "Java card architecture for autonomous yet secure
evolution of smart cards applications", In Information Security
Technology for Applications, pp. 187-192. Springer Berlin Heidelberg,
2012.

[28] Gadyatskaya, Olga, and Fabio Massacci. "Controlling application
interactions on the novel smart cards with Security-by-Contract", In
Formal Methods for Components and Objects, pp. 197-215. Springer
Berlin Heidelberg, 2013.

[29] Dragoni, Nicola, Eduardo Lostal, Davide Papini, and Javier Fabra,
"How to secure off-card matching in Security-by-Contract for open
multi-application smart cards", In Foundations and Practice of Security:
4th Canada-France MITACS Workshop, FPS 2011, Paris, France, May
12-13, 2011, Revised Selected Papers, vol. 6888, p. 32. Springer, 2012.

[30] Beilke, Kristian, and Volker Roth. "FlexCOS: an open smartcard
platform for research and education", In Network and System Security,
pp. 277-290. Springer Berlin Heidelberg, 2012.

[31] Ege, Bar��, Elif Bilge Kavun, and Tolga Yalç�n. "Memory encryption
for smart cards", In Smart Card Research and Advanced Applications,
pp. 199-216. Springer Berlin Heidelberg, 2011.

[32] Martínez, V. Gayoso, L. Hernández Encinas, and C. Sánchez Ávila.
"Java card implementation of the Elliptic Curve integrated encryption
scheme using prime and binary finite fields", In Computational
Intelligence in Security for Information Systems, pp. 160-167. Springer
Berlin Heidelberg, 2011.

[33] He, Junwei, Liji Wu, and Xiangmin Zhang. "Design and
implementation of a low Power Java Coprocessor for dual-interface IC
Bank Card", In ASIC (ASICON), 2011 IEEE 9th International
Conference on, pp. 965-969. IEEE, 2011.

[34] Peng, Zhang, and Jia Jian Fang, "Comparing and implementation of
public key cryptography algorithms on smart card", In Computer
Application and System Modeling (ICCASM), 2010 International
Conference on, vol. 12, pp. V12-508. IEEE, 2010.

39393939

